Reputation: 265
==Using Juypter Notebooks==
I got NLTK working on a single string of text.
Text= 'Hey. I got some text here'
def preprocess(sent):
sent = nltk.word_tokenize(sent)
sent = nltk.pos_tag(sent)
return sent
sent = preprocess(Text)
sent
Output:
[('Hey', 'NNP'),
('.', '.'),
('I', 'PRP'),
('got', 'VBD'),
('some', 'DT'),
('text', 'NN'),
('here', 'RB')]
This is okay, but not that useful because I would like automate this on many rows in a data frame.
Basically tokenize the words while maintaining an index key so I can reassemble the tokens I want in a new field. For example I'm looking for human names in particular excel column that contains over 1,000 rows.
When I try this out on a dataframe this is the problem i run into.
print(desdf)
Description
0 some text here John
1 Other cool text
2 John Paul
Running the code with this data frame I get TypeError: expected string or bytes-like object
def preprocess(sent):
sent = nltk.word_tokenize(sent)
sent = nltk.pos_tag(sent)
return sent
sent = preprocess(desdf)
sent
Is this not possible or is there some conversion command that needs to happen? Thanks for the help.
ERROR:
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-23-b7b2a604215b> in <module>
3 sent = nltk.pos_tag(sent)
4 return sent
----> 5 sent = preprocess(desdf)
6 sent
<ipython-input-23-b7b2a604215b> in preprocess(sent)
1 def preprocess(sent):
----> 2 sent = nltk.word_tokenize(sent)
3 sent = nltk.pos_tag(sent)
4 return sent
5 sent = preprocess(desdf)
~\AppData\Local\Continuum\anaconda3\lib\site-packages\nltk\tokenize\__init__.py in word_tokenize(text, language, preserve_line)
142 :type preserve_line: bool
143 """
--> 144 sentences = [text] if preserve_line else sent_tokenize(text, language)
145 return [
146 token for sent in sentences for token in _treebank_word_tokenizer.tokenize(sent)
~\AppData\Local\Continuum\anaconda3\lib\site-packages\nltk\tokenize\__init__.py in sent_tokenize(text, language)
104 """
105 tokenizer = load('tokenizers/punkt/{0}.pickle'.format(language))
--> 106 return tokenizer.tokenize(text)
107
108
~\AppData\Local\Continuum\anaconda3\lib\site-packages\nltk\tokenize\punkt.py in tokenize(self, text, realign_boundaries)
1275 Given a text, returns a list of the sentences in that text.
1276 """
-> 1277 return list(self.sentences_from_text(text, realign_boundaries))
1278
1279 def debug_decisions(self, text):
~\AppData\Local\Continuum\anaconda3\lib\site-packages\nltk\tokenize\punkt.py in sentences_from_text(self, text, realign_boundaries)
1329 follows the period.
1330 """
-> 1331 return [text[s:e] for s, e in self.span_tokenize(text, realign_boundaries)]
1332
1333 def _slices_from_text(self, text):
~\AppData\Local\Continuum\anaconda3\lib\site-packages\nltk\tokenize\punkt.py in <listcomp>(.0)
1329 follows the period.
1330 """
-> 1331 return [text[s:e] for s, e in self.span_tokenize(text, realign_boundaries)]
1332
1333 def _slices_from_text(self, text):
~\AppData\Local\Continuum\anaconda3\lib\site-packages\nltk\tokenize\punkt.py in span_tokenize(self, text, realign_boundaries)
1319 if realign_boundaries:
1320 slices = self._realign_boundaries(text, slices)
-> 1321 for sl in slices:
1322 yield (sl.start, sl.stop)
1323
~\AppData\Local\Continuum\anaconda3\lib\site-packages\nltk\tokenize\punkt.py in _realign_boundaries(self, text, slices)
1360 """
1361 realign = 0
-> 1362 for sl1, sl2 in _pair_iter(slices):
1363 sl1 = slice(sl1.start + realign, sl1.stop)
1364 if not sl2:
~\AppData\Local\Continuum\anaconda3\lib\site-packages\nltk\tokenize\punkt.py in _pair_iter(it)
316 it = iter(it)
317 try:
--> 318 prev = next(it)
319 except StopIteration:
320 return
~\AppData\Local\Continuum\anaconda3\lib\site-packages\nltk\tokenize\punkt.py in _slices_from_text(self, text)
1333 def _slices_from_text(self, text):
1334 last_break = 0
-> 1335 for match in self._lang_vars.period_context_re().finditer(text):
1336 context = match.group() + match.group('after_tok')
1337 if self.text_contains_sentbreak(context):
TypeError: expected string or bytes-like object
Upvotes: 0
Views: 778
Reputation: 862641
Select column and use Series.apply
for processing function per column:
sent = desdf['Description'].apply(preprocess)
Upvotes: 1