Reputation: 1594
I have the following C code:
/* the memory entry points to can be changed from another thread but
* it is not declared volatile */
struct myentry *entry;
bool isready(void)
{
return entry->status == 1;
}
bool isready2(int idx)
{
struct myentry *x = entry + idx;
return x->status == 1;
}
int main(void) {
/* busy loop */
while (!isready())
;
while (!isready2(5))
;
}
As I note in the comment, entry is not declared as volatile even though the array it points to can be changed from another thread (or actually even directly from kernel space).
Is the above code incorrect / unsafe? My thinking is that no optimization could be performed in the bodies of isready, isready2 and since I repeatedly perform function calls from within main the appropriate memory location should be read on every call.
On the other hand, the compiler could inline these functions. Is it possible that it does it in a way that results in a single read happening (hence causing an infinite loop) instead of multiple reads (even if these reads come from a load/store buffer)?
And a second question. Is it possible to prevent the compiler from doing optimizations by casting to volatile only in certain places like that?
void func(void)
{
entry->status = 1;
while (((volatile struct myentry *) entry)->status != 2)
;
}
Thanks.
Upvotes: 0
Views: 64
Reputation: 141628
If the memory entry
points to can be modified by another thread, then the program has a data race and therefore the behaviour is undefined . This is still true even if volatile
is used.
To have a variable accessed concurrently by multiple threads, in ISO C11, it must either be an atomic type, or protected by correct synchronization.
If using an older standard revision then there are no guarantees provided by the Standard about multithreading so you are at the mercy of any idiosyncratic behaviour of your compiler.
If using POSIX threads, there are no portable atomic operations, but it does define synchronization primitives.
See also:
The second question is a bugbear, I would suggest not doing it because different compilers may interpret the meaning differently, and the behaviour is still formally undefined either way.
Upvotes: 2