Reputation: 97
As described in the headline I want to make a very specific conversion from RGB to Grayscale.
I have a bunch of images that might look like this:
and i want to convert them to an image like this .
Now you might wonder why I am not just using opencv's inbuilt functions. The reason is that I need to map each color of the RGB image to a specific intensity value in grayscale, which is not all to difficult since I have only six colors.
Red, rgb(255,0,0) -> 25
Brown, rgb(165,42,42) -> 120
Light Blue, rgb(0,255,255) -> 127
Green, rgb(127,255,0) -> 50
Yellow, rgb(255,255,255) -> 159
Purple, rgb(128, 0, 128) -> 90
Now I have already created an array with some objects that contain these mappings and I am simply iterating over my images to assign the new color codes. However this is very slow and i expect to grow a magnificent beard before this is finished for all the images (also I want to know this for learning purpose). This is my super slow running code and the mapping object so far:
colorMapping = [ColorMapping(RGB=[255, 0, 0], Grayscale=25),
ColorMapping(RGB=[165, 42, 42], Grayscale=120), ... ]
def RGBtoGray(RGBimg, colorMapping):
RGBimg = cv2.cvtColor(RGBimg, cv2.COLOR_BGR2RGB)
row = RGBimg.shape[0]
col = RGBimg.shape[1]
GRAYimg = np.zeros((row, col))
for x in range(0,row):
for y in range(0,col):
pixel = RGBimg[x,y,:]
for cm in colorMapping:
if np.array_equal(pixel, np.array(cm.RGB)):
GRAYimg[x,y] = cm.Grayscale
return GRAYimg
I am glad for any suggestions for using built in libraries or improving this codes computation. The color map is read from a json file, which functions as a automation step since I have to do this at least for two batches of images with different encodings.
Upvotes: 1
Views: 333
Reputation: 221504
Here's one vectorized based on 1D
transformation + np.searchsorted
, inspired by this post -
def map_colors(img, colors, vals, invalid_val=0):
s = 256**np.arange(3)
img1D = img.reshape(-1,img.shape[2]).dot(s)
colors1D = colors.reshape(-1,img.shape[2]).dot(s)
sidx = colors1D.argsort()
idx0 = np.searchsorted(colors1D, img1D, sorter=sidx)
idx0[idx0==len(sidx)] = 0
mapped_idx = sidx[idx0]
valid = colors1D[mapped_idx] == img1D
return np.where(valid, vals[mapped_idx], invalid_val).reshape(img.shape[:2])
Sample run -
# Mapping colors array
In [197]: colors
Out[197]:
array([[255, 0, 0],
[165, 42, 42],
[ 0, 255, 255],
[127, 255, 0],
[255, 255, 255],
[128, 0, 128]])
# Mapping values array
In [198]: vals
Out[198]: array([ 25, 120, 127, 50, 155, 90])
# Input 3D image array
In [199]: img
Out[199]:
array([[[255, 255, 255],
[128, 0, 128],
[255, 0, 0],
[127, 255, 0]],
[[127, 255, 0],
[127, 255, 0],
[165, 42, 42],
[ 0, 0, 0]]]) # <= one color absent in mappings
# Output
In [200]: map_colors(img, colors, vals, invalid_val=0)
Out[200]:
array([[155, 90, 25, 50],
[ 50, 50, 120, 0]])
We could pre-sort the mappings and hence, get rid of sorting needed around searchsorted and this should further boost performance -
def map_colors_with_sorting(img, colors, vals, invalid_val=0):
s = 256**np.arange(3)
img1D = img.reshape(-1,img.shape[2]).dot(s)
colors1D = colors.reshape(-1,img.shape[2]).dot(s)
sidx = colors1D.argsort()
colors1D_sorted = colors1D[sidx]
vals_sorted = vals[sidx]
idx0 = np.searchsorted(colors1D_sorted, img1D)
idx0[idx0==len(sidx)] = 0
valid = colors1D_sorted[idx0] == img1D
return np.where(valid, vals_sorted[idx0], invalid_val).reshape(img.shape[:2])
We can use a mapping array that when indexed by 1D
transformed colors would lead us directly to the final "grayscale" image, as shown below -
def map_colors_with_mappingar_solution(img):
# Edit the custom colors and values here
colors = np.array([
[ 0, 0, 255],
[ 42, 42, 165],
[255, 255, 0],
[ 0, 255, 127],
[255, 255, 255],
[128, 0, 128]], dtype=np.uint8) # BGR format
vals = np.array([25, 120, 127, 50, 155, 90], dtype=np.uint8)
return map_colors_with_mappingar(img, colors, vals, 0)
def map_colors_with_mappingar(img, colors, vals, invalid_val=0):
s = 256**np.arange(3)
img1D = img.reshape(-1,img.shape[2]).dot(s)
colors1D = colors.reshape(-1,img.shape[2]).dot(s)
N = colors1D.max()+1
mapar = np.empty(N, dtype=np.uint8)
mapar[colors1D] = vals
mask = np.zeros(N, dtype=bool)
mask[colors1D] = True
valid = img1D < N
valid &= mask[img1D]
out = np.full(len(img1D), invalid_val, dtype=np.uint8)
out[valid] = mapar[img1D[valid]]
return out.reshape(img.shape[:2])
This should scale well as you increase the number of custom colors.
Let's time it for the given sample image -
# Read in sample image
In [360]: im = cv2.imread('blobs.png')
# @Mark Setchell's solution
In [362]: %timeit remap2(im)
7.45 ms ± 105 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
# Method2 from this post
In [363]: %timeit map_colors_with_mappingar_solution(im)
6.76 ms ± 46.6 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
Further perf. boost
Going one step further, we could do the 1D reduction in a more performant way and hence achieve further perf. boost, like so -
# https://stackoverflow.com/a/57236217/ @tstanisl
def scalarize(x):
# compute x[...,2]*65536+x[...,1]*256+x[...,0] in efficient way
y = x[...,2].astype('u4')
y <<= 8
y +=x[...,1]
y <<= 8
y += x[...,0]
return y
def map_colors_with_mappingar(img, colors, vals, invalid_val=0):
img1D = scalarize(img)
colors1D = scalarize(colors)
N = colors1D.max()+1
mapar = np.empty(N, dtype=np.uint8)
mapar[colors1D] = vals
mask = np.zeros(N, dtype=bool)
mask[colors1D] = True
valid = img1D < N
valid &= mask[img1D]
out = np.full(img1D.shape, invalid_val, dtype=np.uint8)
out[valid] = mapar[img1D[valid]]
return out
# On given sample image
In [10]: %timeit map_colors_with_mappingar_solution(im)
5.45 ms ± 143 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
Upvotes: 4
Reputation: 207345
This is probably as easy as anything else. It does make 6 passes over your image, so some clever Numpy folk may know a better way, but it will be a lot faster than your loops.
#!/usr/bin/env python3
import numpy as np
import cv2
# Load image
im = cv2.imread('blobs.png')
# Make output image
res = np.zeros_like(im[:,:,0])
res[np.all(im == (0, 0, 255), axis=-1)] = 25
res[np.all(im == (42,42,165), axis=-1)] = 120
res[np.all(im == (255,255,0), axis=-1)] = 127
res[np.all(im == (0,255,127), axis=-1)] = 50
res[np.all(im == (255,255,255), axis=-1)] = 159
res[np.all(im == (128,0,128), axis=-1)] = 90
# Write image of just palette indices
cv2.imwrite('indices.png', res)
You can make it run in 5ms versus 30ms by converting each RGB triplet into a single 24-bit number as inspired by this answer.
#!/usr/bin/env python3
import numpy as np
import cv2
def remap2(im):
# Make output image
res = np.zeros_like(im[:,:,0])
# Make a single 24-bit number for each pixel
r = np.dot(im.astype(np.uint32),[1,256,65536])
c0 = 0 + 0*256 + 255*65536
c1 = 42 + 42*256 + 165*65536
c2 = 255 + 255*256 + 0*65536
c3 = 0 + 255*256 + 127*65536
c4 = 255 + 255*256 + 255*65536
c5 = 128 + 0*256 + 128*65536
res[r == c0] = 25
res[r == c1] = 120
res[r == c2] = 127
res[r == c3] = 50
res[r == c4] = 159
res[r == c5] = 90
return res
# Load image
im = cv2.imread('blobs.png')
res = remap2(im)
cv2.imwrite('result.png',res)
Upvotes: 2