Reputation: 89
I have 69 machines and each machine has 12-month production data.
I plot them all with groupby.plot() and got a long list of views. Wondering how to make a tight layout so I can view them at once? Result wanted is each row has 7 columns and 69/7 rows. Please help!
c1.groupby('System ID').plot(x='Month', y='Monthly Production',kind='bar',legend=True)
Upvotes: 0
Views: 362
Reputation: 89
Here's my final answer.
# We can ask for ALL THE AXES and put them into axes
fig, axes = plt.subplots(nrows=10, ncols=7, sharex=True, sharey=False, figsize=(20,15))
axes_list = [item for sublist in axes for item in sublist]
ordered_systems = grouped['Monthly Production'].last().sort_values(ascending=False).index
# Now instead of looping through the groupby
# you CREATE the groupby
# you LOOP through the ordered names
# and you use .get_group to get the right group
grouped = c1.groupby("System ID")
first_month = c1['Month'].min()
last_month = c1['Month'].max()
for system in ordered_systems:
selection = grouped.get_group(system)
ax = axes_list.pop(0)
selection.plot(x='Month', y='Monthly Production', label=system, ax=ax, legend=False)
selection.plot(x='Month', y='Monthly Usage',secondary_y=True, ax=ax, legend=False)
ax.set_title(system)
ax.tick_params(
which='both',
bottom='off',
left='off',
right='off',
top='off'
)
ax.grid(linewidth=0.25)
ax.set_xlim((first_month, last_month))
ax.set_xlabel("")
ax.set_xticks((first_month, last_month))
ax.spines['left'].set_visible(False)
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
# Now use the matplotlib .remove() method to
# delete anything we didn't use
for ax in axes_list:
ax.remove()
plt.subplots_adjust(hspace=1)
plt.tight_layout()
Upvotes: 1
Reputation: 4705
I thought I'd add an example using seaborn as it might be useful in this context as it's quite easy to wrap things by columns with it. I expect that there's someone who could provide a nicer answer, perhaps using pandas, and I hope they do.
import seaborn as sns
import pandas as pd
import numpy as np
np.random.seed(1)
N = 2000
df = pd.DataFrame(np.random.randint(0,4, (N,7)))
df['system'] = np.random.randint(0, 69, N )
Which gives df
as;
0 1 2 3 4 5 6 system
674 1 2 3 1 0 0 0 15
1699 0 0 1 3 0 0 1 9
1282 0 0 0 0 1 0 2 47
1315 0 3 1 3 1 1 1 37
1210 1 1 0 3 1 3 1 11
Melting the data before plotting:
df_plot = df.melt(id_vars='system')
Which looks as
system variable value
8756 23 4 2
5474 24 2 2
11242 12 5 2
7820 56 3 3
Then
sns.catplot(x = 'variable', y = 'value', col = 'system',
hue = 'variable', dodge = False,
col_wrap = 6, data = df_plot, kind = 'bar', ci = False)
Upvotes: 1