Reputation: 632
Suppose I have the following script, which constructs a symbolic array, A_known
, and a symbolic vector x
, and performs a matrix multiplication.
clc; clearvars
try
pkg load symbolic
catch
error('Symbolic package not available!');
end
syms V_l k s0 s_mean
N = 3;
% Generate left-hand-side square matrix
A_known = sym(zeros(N));
for hI = 1:N
A_known(hI, 1:hI) = exp(-(hI:-1:1)*k);
end
A_known = A_known./V_l;
% Generate x vector
x = sym('x', [N 1]);
x(1) = x(1) + s0*V_l;
% Matrix multiplication to give b vector
b = A_known*x
Suppose A_known
was actually unknown. Is there a way to deduce it from b
and x
? If so, how?
Til now, I only had the case where x
was unknown, which normally can be solved via x = b \ A
.
Upvotes: 0
Views: 53
Reputation: 102241
Mathematically, it is possible to get a solution, but it actually has infinite solutions.
Example
A = magic(5);
x = (1:5)';
b = A*x;
A_sol = b*pinv(x);
which has
>> A
A =
17 24 1 8 15
23 5 7 14 16
4 6 13 20 22
10 12 19 21 3
11 18 25 2 9
but solves A
as A_sol
like
>> A_sol
A_sol =
3.1818 6.3636 9.5455 12.7273 15.9091
3.4545 6.9091 10.3636 13.8182 17.2727
4.4545 8.9091 13.3636 17.8182 22.2727
3.4545 6.9091 10.3636 13.8182 17.2727
3.1818 6.3636 9.5455 12.7273 15.9091
Upvotes: 1