Reputation: 5222
I am using two estimators, Randomforest and SVM
random_forest_pipeline=Pipeline([
('vectorizer',CountVectorizer(stop_words='english')),
('random_forest',RandomForestClassifier())
])
svm_pipeline=Pipeline([
('vectorizer',CountVectorizer(stop_words='english')),
('svm',LinearSVC())
])
I want to first vectorize the data and then use the estimator, I was going through this online tutorial . then I use the hyper parameter as follows
parameters=[
{
'vectorizer__max_features':[500,1000,1500],
'random_forest__min_samples_split':[50,100,250,500]
},
{
'vectorizer__max_features':[500,1000,1500],
'svm__C':[1,3,5]
}
]
and passed to the GridSearchCV
pipelines=[random_forest_pipeline,svm_pipeline]
grid_search=GridSearchCV(pipelines,param_grid=parameters,cv=3,n_jobs=-1)
grid_search.fit(x_train,y_train)
but, when I run the code I get an error
TypeError: estimator should be an estimator implementing 'fit' method
Don't know why am I getting this error
Upvotes: 4
Views: 4069
Reputation: 16966
It is quite possible to do it in a single Pipeline
/GridSearchCV
, based on an example here.
You just have to explicitly mention the scoring
method for the pipeline since we are not declaring the final estimator initially.
Example:
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.pipeline import Pipeline
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import LinearSVC
my_pipeline = Pipeline([
('vectorizer', CountVectorizer(stop_words='english')),
('clf', 'passthrough')
])
parameters = [
{
'vectorizer__max_features': [500, 1000],
'clf':[RandomForestClassifier()],
'clf__min_samples_split':[50, 100,]
},
{
'vectorizer__max_features': [500, 1000],
'clf':[LinearSVC()],
'clf__C':[1, 3]
}
]
grid_search = GridSearchCV(my_pipeline, param_grid=parameters, cv=3, n_jobs=-1, scoring='accuracy')
grid_search.fit(X, y)
grid_search.best_params_
> # {'clf': RandomForestClassifier(bootstrap=True, ccp_alpha=0.0, class_weight=None,
# criterion='gini', max_depth=None, max_features='auto',
# max_leaf_nodes=None, max_samples=None,
# min_impurity_decrease=0.0, min_impurity_split=None,
# min_samples_leaf=1, min_samples_split=100,
# min_weight_fraction_leaf=0.0, n_estimators=100,
# n_jobs=None, oob_score=False, random_state=None,
# verbose=0, warm_start=False),
# 'clf__min_samples_split': 100,
# 'vectorizer__max_features': 1000}
pd.DataFrame(grid_search.cv_results_)[['param_vectorizer__max_features',
'param_clf__min_samples_split',
'param_clf__C','mean_test_score',
'rank_test_score']]
Upvotes: 6
Reputation: 33127
The problem is the pipelines=[random_forest_pipeline,svm_pipeline]
that is a list not having the fit
method.
Even if you could make it work this way, at some point the 'random_forest__min_samples_split':[50,100,250,500]
would be passed in the svm_pipeline
and this would raise an error.
ValueError: Invalid parameter svm for estimator Pipeline
You cannot mix this way 2 pipelines because at some point you request the svm_pipeline
to be evaluated using the values of random_forest__min_samples_split
and this is INVALID.
Solution: Fit a GridSearch object for the Random forest model and another GridSearch object for the SVC model
pipelines=[random_forest_pipeline,svm_pipeline]
grid_search_1=GridSearchCV(pipelines[0],param_grid=parameters[0],cv=3,n_jobs=-1)
grid_search_1.fit(X,y)
grid_search_2=GridSearchCV(pipelines[1],param_grid=parameters[1],cv=3,n_jobs=-1)
grid_search_2.fit(X,y)
Full code:
random_forest_pipeline=Pipeline([
('vectorizer',CountVectorizer(stop_words='english')),
('random_forest',RandomForestClassifier())
])
svm_pipeline=Pipeline([
('vectorizer',CountVectorizer(stop_words='english')),
('svm',LinearSVC())
])
parameters=[
{
'vectorizer__max_features':[500,1000,1500],
'random_forest__min_samples_split':[50,100,250,500]
},
{
'vectorizer__max_features':[500,1000,1500],
'svm__C':[1,3,5]
}
]
pipelines=[random_forest_pipeline,svm_pipeline]
# gridsearch only for the Random Forest model
grid_search_1 =GridSearchCV(pipelines[0],param_grid=parameters[0],cv=3,n_jobs=-1)
grid_search_1.fit(X,y)
# gridsearch only for the SVC model
grid_search_2 =GridSearchCV(pipelines[1],param_grid=parameters[1],cv=3,n_jobs=-1)
grid_search_2.fit(X,y)
If you explicitly define the models into the param_grid
list then it is possible based on the documentation.
Code from doc:
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_digits
from sklearn.model_selection import GridSearchCV
from sklearn.pipeline import Pipeline
from sklearn.svm import LinearSVC
from sklearn.decomposition import PCA, NMF
from sklearn.feature_selection import SelectKBest, chi2
print(__doc__)
pipe = Pipeline([
# the reduce_dim stage is populated by the param_grid
('reduce_dim', 'passthrough'),
('classify', LinearSVC(dual=False, max_iter=10000))
])
N_FEATURES_OPTIONS = [2, 4, 8]
C_OPTIONS = [1, 10, 100, 1000]
param_grid = [
{
'reduce_dim': [PCA(iterated_power=7), NMF()],
'reduce_dim__n_components': N_FEATURES_OPTIONS,
'classify__C': C_OPTIONS
},
{
'reduce_dim': [SelectKBest(chi2)],
'reduce_dim__k': N_FEATURES_OPTIONS,
'classify__C': C_OPTIONS
},
]
reducer_labels = ['PCA', 'NMF', 'KBest(chi2)']
grid = GridSearchCV(pipe, n_jobs=1, param_grid=param_grid)
X, y = load_digits(return_X_y=True)
grid.fit(X, y)
Upvotes: 4