moolz
moolz

Reputation: 29

How to efficiently replace these imdb movie title IDs with the actual title based on a column match?

I've been working in R with some IMDB data that they publish, and have been stuck on this for embarrassingly long today.

primaryName     tconst                 primaryTitle                          knownForTitles
1          Aaron Lim  tt2317744            My Friend Bernard tt0268228,tt0891369,tt2317744,tt3709694
2      Aaron Woodley  tt3228088          Spark: A Space Tail tt0326065,tt1650535,tt4426464,tt3228088
3 Abdelkader Belhedi tt11069302       The Carthage Castaways         tt11698758,tt11069302,tt0485746

I am struggling to come up with a way to match the knownForTitles IDs with the ID in the tconst column. After matching, I would like to replace the IDs in knownForTitles with the actual title names from primaryTitle, like below.

primaryName     tconst                 primaryTitle                          knownForTitles
1          Aaron Lim  tt2317744            My Friend Bernard Movie Title,Movie Title,Movie Title,Movie Title
2      Aaron Woodley  tt3228088          Spark: A Space Tail Movie Title,Movie Title,Movie Title,Movie Title
3 Abdelkader Belhedi tt11069302       The Carthage Castaways         Movie Title,Movie Title,Movie Title

I can only think of using a bunch of for loops which may be very inefficient for thousands of rows. If anyone can point me in a better direction that'd be awesome.

Upvotes: 0

Views: 456

Answers (2)

Ronak Shah
Ronak Shah

Reputation: 389235

We can get the data in separate_rows, match knownForTitles with tconst get the corresponding primaryTitle value and collapse data together for each Name.

library(dplyr)

df %>%
  tidyr::separate_rows(knownForTitles, sep = ',') %>%
  mutate(knownForTitles = primaryTitle[match(knownForTitles, tconst)]) %>%
  group_by(primaryName) %>%
  summarise(knownForTitles = toString(na.omit(knownForTitles)))

In base R, we can split the string and match

df$knownForTitles <- sapply(strsplit(df$knownForTitles, ','), function(x) 
                 with(df, toString(na.omit(primaryTitle[match(x, tconst)]))))

Upvotes: 2

Taufi
Taufi

Reputation: 1577

The code is this. The explanation is below.

Code.

df = data.frame(primaryName = c("Aaron Lim", "Aaron Woodley"), tconst = c("tt2317744", "tt3228088"), primaryTitle = c("My friend Ron", "Spark: Some Title"), knownForTitles = c("tt0268228,tt0891369,tt2317744,tt3709694", "tt0326065,tt1650535,tt4426464,tt3228088"))
df$tconst = as.character(df$tconst)
Names = df %>%  
  mutate(V2 = strsplit(as.character(knownForTitles), ",")) %>% 
  tidyr::unnest(V2) %>% 
  select(-knownForTitles) %>% 
  as.data.frame(.) 
Movies = df[,2:3]
Modi = left_join(Names, Movies, by = c("V2" = "tconst")) 
Modi$primaryTitle.y = as.character(Modi$primaryTitle.y)
Modi[is.na(Modi$primaryTitle.y), "primaryTitle.y"] = "Test"

Modi %>% 
  group_by(tconst) %>%  
  summarise(primNew = stringr::str_c(primaryTitle.y, collapse = ", ")) %>% 
  inner_join(df, .)

Output.

    primaryName    tconst      primaryTitle                          knownForTitles
1     Aaron Lim tt2317744     My friend Ron tt0268228,tt0891369,tt2317744,tt3709694
2 Aaron Woodley tt3228088 Spark: Some Title tt0326065,tt1650535,tt4426464,tt3228088
                              primNew
1     Test, Test, My friend Ron, Test
2 Test, Test, Test, Spark: Some Title

Explanation.

Let's define some toy data.

    df = data.frame(primaryName = c("Aaron Lim", "Aaron Woodley"), 
                    tconst = c("tt2317744", "tt3228088"), 
                    primaryTitle = c("My friend", "Spark"), 
                    knownForTitles = c("tt0268228,tt0891369,tt2317744,tt3709694", "tt0326065,tt1650535,tt4426464,tt3228088"))
    df$tconst = as.character(df$tconst)

Then you can take tidyr's unnest function to split all the column strings into rows, like this

Names = df %>%  
  mutate(V2 = strsplit(as.character(knownForTitles), ",")) %>% 
  tidyr::unnest(V2) %>% 
  select(-knownForTitles) %>% 
  as.data.frame(.) 

with the result

> Names
    primaryName    tconst      primaryTitle        V2
1     Aaron Lim tt2317744     My friend Ron tt0268228
2     Aaron Lim tt2317744     My friend Ron tt0891369
3     Aaron Lim tt2317744     My friend Ron tt2317744
4     Aaron Lim tt2317744     My friend Ron tt3709694
5 Aaron Woodley tt3228088 Spark: Some Title tt0326065
6 Aaron Woodley tt3228088 Spark: Some Title tt1650535
7 Aaron Woodley tt3228088 Spark: Some Title tt4426464
8 Aaron Woodley tt3228088 Spark: Some Title tt3228088

Then you get the movie names for all tconstants with

Movies = df[,2:3]
Modi = left_join(Names, Movies, by = c("V2" = "tconst")) 

and the result

    primaryName    tconst    primaryTitle.x        V2    primaryTitle.y
1     Aaron Lim tt2317744     My friend Ron tt0268228              <NA>
2     Aaron Lim tt2317744     My friend Ron tt0891369              <NA>
3     Aaron Lim tt2317744     My friend Ron tt2317744     My friend Ron
4     Aaron Lim tt2317744     My friend Ron tt3709694              <NA>
5 Aaron Woodley tt3228088 Spark: Some Title tt0326065              <NA>
6 Aaron Woodley tt3228088 Spark: Some Title tt1650535              <NA>
7 Aaron Woodley tt3228088 Spark: Some Title tt4426464              <NA>
8 Aaron Woodley tt3228088 Spark: Some Title tt3228088 Spark: Some Title

As this is toy data there are NA values which cause some trouble, so we do

Modi$primaryTitle.y = as.character(Modi$primaryTitle.y)
Modi[is.na(Modi$primaryTitle.y), "primaryTitle.y"] = "Test"

to cope with that.

Finally, you modify the matched movies and collapse them in one row with

Modi %>% 
  group_by(tconst) %>%  
  summarise(primNew = stringr::str_c(primaryTitle.y, collapse = ", ")) %>% 
  inner_join(df, .)

and the result

    primaryName    tconst      primaryTitle                          knownForTitles
1     Aaron Lim tt2317744     My friend Ron tt0268228,tt0891369,tt2317744,tt3709694
2 Aaron Woodley tt3228088 Spark: Some Title tt0326065,tt1650535,tt4426464,tt3228088
                              primNew
1     Test, Test, My friend Ron, Test
2 Test, Test, Test, Spark: Some Title

Upvotes: 2

Related Questions