Reputation: 1121
I have a data frame as:
df = pd.DataFrame(
{'title':['a1','a2','a3','a4','a5'],
'genre_name':[
['family', 'animation'],
['action', 'family', 'comedy'],
['family', 'comedy'],
['horror','action'],
['family', 'animation','comedy']]}
)
df
title genre_name
0 a1 ['family', 'animation']
1 a2 ['action', 'family', 'comedy']
2 a3 ['family', 'comedy']
3 a4 ['horror','action]
4 a5 ['family', 'animation','comedy']
I have dictionary as:
dict={'1':'family','2':'animation','3':'action','4':'comedy','5':'horror'}
I want to create a new column called as 'genre_ids' which will map all genre_names to the keys in the dictionary 'dict'.
the required df is:
df
title genre_name genre_ids
0 a1 ['family', 'animation'] [1,2]
1 a2 ['action', 'family', 'comedy'] [3,1,4]
2 a3 ['family', 'comedy'] [1,4]
3 a4 ['horror','action] [5,3]
4 a5 ['family', 'animation','comedy'] [1,2,4]
How can i achieve this?
Upvotes: 1
Views: 64
Reputation: 862641
Change dictionary name from dict
to some another variable, because builtins (python code word), then swap keys with values and map values in list comprehenesion:
d={'1':'family','2':'animation','3':'action','4':'comedy','5':'horror'}
d1 = {v:k for k, v in d.items()}
df['genre_ids'] = df['genre_name'].apply(lambda x: [d1.get(y) for y in x])
#alternative
#df['genre_ids'] = [[d1.get(y) for y in x] for x in df['genre_name']]
print (df)
title genre_name genre_ids
0 a1 [family, animation] [1, 2]
1 a2 [action, family, comedy] [3, 1, 4]
2 a3 [family, comedy] [1, 4]
3 a4 [horror, action] [5, 3]
4 a5 [family, animation, comedy] [1, 2, 4]
EDIT: You can also specified whats happen if no match, here is added crime
for first list:
df = pd.DataFrame({'title':['a1','a2','a3','a4','a5'],
'genre_name':[['crime', 'animation'],['action', 'family', 'comedy'],
['family', 'comedy'],['horror','action'],
['family', 'animation','comedy']]})
d={'1':'family','2':'animation','3':'action','4':'comedy','5':'horror'}
d1 = {v:k for k, v in d.items()}
#no matched values repalced to None
df['genre_ids0'] = df['genre_name'].apply(lambda x: [d1.get(y) for y in x])
#no match replaced to default value
df['genre_ids1'] = df['genre_name'].apply(lambda x: [d1.get(y, 0) for y in x])
#no match is removed
df['genre_ids2'] = df['genre_name'].apply(lambda x: [d1[y] for y in x if y in d1])
print (df)
title genre_name genre_ids0 genre_ids1 genre_ids2
0 a1 [crime, animation] [None, 2] [0, 2] [2]
1 a2 [action, family, comedy] [3, 1, 4] [3, 1, 4] [3, 1, 4]
2 a3 [family, comedy] [1, 4] [1, 4] [1, 4]
3 a4 [horror, action] [5, 3] [5, 3] [5, 3]
4 a5 [family, animation, comedy] [1, 2, 4] [1, 2, 4] [1, 2, 4]
Upvotes: 8