Reputation: 7375
I need to (per a prompt) "compute the n-fold cross validation as well as mean and standard deviation of the performance measure on the n folds" for each of 3 algorithms.
My original dataframe is structured like this, where there are 16 types that repeat:
target type post
1 intj "hello world shdjd"
2 entp "hello world fddf"
16 estj "hello world dsd"
4 esfp "hello world sfs"
1 intj "hello world ddfd"
Ive trained and computed accuracy for Naive Bayes, SVM and Logistic Regression like this:
text_clf3 = Pipeline([
('vect', CountVectorizer()),
('tfidf', TfidfTransformer()),
('clf', LogisticRegression(multi_class = 'multinomial', solver = 'newton-cg')),
])
text_clf3.fit(result.post, result.target)
predicted3 = text_clf3.predict(docs_test)
print("Logistics Regression: ")
print(np.mean(predicted3 == result.target))
With clf being
LogisticRegression(multi_class = 'multinomial', solver = 'newton-cg')
SGDClassifier(loss='hinge', penalty='l2',
alpha=1e-3, random_state=42,
max_iter=5, tol=None)
and
MultinomialNB(alpha = 0.0001)
I can get (metrics.classification_report(result.target, predicted3)
for each model, but dont know how to implement cross validation.
How can I do this?
Upvotes: 0
Views: 1574
Reputation: 5455
I can not test this because I don't have the datasets, but the code below will hopefully make the main idea clear. In code below, all_post
denotes all samples combined, both result.post
and docs_test
according to your example, and n
is assumed to be 10.
from sklearn.model_selection import cross_val_score
models = {'lr':LogisticRegression(multi_class = 'multinomial', solver = 'newton-cg'),
'nb':MultinomialNB(alpha = 0.0001),
'sgd':SGDClassifier(loss='hinge', penalty='l2',alpha=1e-3, random_state=42,
max_iter=5, tol=None)}
for name,clf in models.items():
pipe = Pipeline([('vect', CountVectorizer()),
('tfidf', TfidfTransformer()),
('clf', clf)])
res = cross_val_score(pipe,all_post,all_target,cv=10) #res is an array of size 10
print(name,res.mean(),res.std())
Upvotes: 0