Reputation: 17676
For a list of numbers
val numbers = Seq(0.0817381355303346, 0.08907955219917718, 0.10581384008994665, 0.10970915785902469, 0.1530743353025532, 0.16728932033107657, 0.181932212814931, 0.23200826752868853, 0.2339654613723784, 0.2581657775305527, 0.3481071101229365, 0.5010850992326521, 0.6153244818101578, 0.6233250409474894, 0.6797744231690304, 0.6923891392381571, 0.7440316016776881, 0.7593186414698002, 0.8028091068764153, 0.8780699052482807, 0.8966649331194205)
python / pandas
computes the following percentiles:
25% 0.167289
50% 0.348107
75% 0.692389
However, scala returns:
calcPercentiles(Seq(.25, .5, .75), sortedNumber.toArray)
25% 0.1601818278168149
50% 0.3481071101229365
75% 0.7182103704579226
The numbers are almost matching - but different. How can I get rid of the difference (and most likely fix a bug in my scala code?
val sortedNumber = numbers.sorted
import scala.collection.mutable
case class PercentileResult(percentile:Double, value:Double)
// https://github.com/scalanlp/breeze/blob/master/math/src/main/scala/breeze/stats/DescriptiveStats.scala#L537
def calculatePercentile(arr: Array[Double], p: Double)={
// +1 so that the .5 == mean for even number of elements.
val f = (arr.length + 1) * p
val i = f.toInt
if (i == 0) arr.head
else if (i >= arr.length) arr.last
else {
arr(i - 1) + (f - i) * (arr(i) - arr(i - 1))
}
}
def calcPercentiles(percentiles:Seq[Double], arr: Array[Double]):Array[PercentileResult] = {
val results = new mutable.ListBuffer[PercentileResult]
percentiles.foreach(p => {
val r = PercentileResult(percentile = p, value = calculatePercentile(arr, p))
results.append(r)
})
results.toArray
}
python:
import pandas as pd
df = pd.DataFrame({'foo':[0.0817381355303346, 0.08907955219917718, 0.10581384008994665, 0.10970915785902469, 0.1530743353025532, 0.16728932033107657, 0.181932212814931, 0.23200826752868853, 0.2339654613723784, 0.2581657775305527, 0.3481071101229365, 0.5010850992326521, 0.6153244818101578, 0.6233250409474894, 0.6797744231690304, 0.6923891392381571, 0.7440316016776881, 0.7593186414698002, 0.8028091068764153, 0.8780699052482807, 0.8966649331194205]})
display(df.head())
df.describe()
Upvotes: 1
Views: 167
Reputation: 27535
After a bit trial and error I write this code that returns the same results as Panda (using linear interpolation as this is pandas default):
def calculatePercentile(numbers: Seq[Double], p: Double): Double = {
// interpolate only - no special handling of the case when rank is integer
val rank = (numbers.size - 1) * p
val i = numbers(math.floor(rank).toInt)
val j = numbers(math.ceil(rank).toInt)
val fraction = rank - math.floor(rank)
i + (j - i) * fraction
}
From that I would say that the errors was here:
(arr.length + 1) * p
Percentile of 0 should be 0, and percentile at 100% should be a maximal index.
So for numbers
(.size == 21
) that would be indices 0
and 20
. However, for 100% you would get index value of 22 - bigger than the size of array! If not for these guard clauses:
else if (i >= arr.length) arr.last
you would get error and you could suspect that something is wrong. Perhaps authors of the code:
https://github.com/scalanlp/breeze/blob/master/math/src/main/scala/breeze/stats/DescriptiveStats.scala#L537
used a different definition of percentile... (?) or they might simply have a bug. I cannot tell.
BTW: This:
def calcPercentiles(percentiles:Seq[Double], arr: Array[Double]): Array[PercentileResult]
could be much easier to write like this:
def calcPercentiles(percentiles:Seq[Double], numbers: Seq[Double]): Seq[PercentileResult] =
percentiles.map { p =>
PercentileResult(p, calculatePercentile(numbers, p))
}
Upvotes: 1