Reputation: 911
I am trying to build an R Shiny dashboard that displays a couple of pages for my exercise data. I am stuck on how to write the code for a dashboard of boxplots displaying the distribution of Calories burned per Trainer. What I want to happen is to have a selectInput that allows a user to select from a list of Trainers and this selection will update the boxplot. But, the variable selected will be a dummy variable where I have the selected Trainer boxplot compared against "All other" trainers side by side.
Here is an example of my dataset:
VisitNum VisitNumMonth Date ClassLength Calories AvgHR Location Trainer Visits_Trainer
1 1 12/15/19 56 602 128 A Mike 4
2 1 12/16/19 55 610 130 A Mike 4
3 2 01/04/20 52 550 120 A Sally 2
4 2 01/05/20 61 575 134 B Jennie 5
5 2 01/10/20 57 654 133 A Tim 1
6 2 01/17/20 55 592 119 A Rachael 1
7 3 02/04/20 50 632 129 B Jennie 5
8 3 02/22/20 48 630 125 B Jennie 5
9 3 02/28/20 59 609 136 B Marshall 6
10 4 03/03/20 53 598 134 A Mike 4
Here is my code:
library(RSQLite)
library(sqldf)
library(shiny)
library(shinydashboard)
library(DT)
library(ggplot2)
library(shiny)
data=as.data.frame(read_excel("mydata.xlsx",sheet=1))
#Create "Other" value for Trainers with less than 3 visits
data$Trainer2=ifelse(data$Visits_Trainer>=3,data$Trainer,"Other")
#Remove "Other" as possible selection in SelectInput
TrainerChoices=unique(data$Trainer2)
TrainerChoices=TrainerChoices[!TrainerChoices %in% "Other"]
Table1=sqldf("select VisitNum as 'Visit #', Date, Location as 'Studio', Trainer, Calories, AvgHR
from data
group by VisitNum, Date, Location, Trainer")
# Define UI for application
ui <- fluidPage(
titlePanel("Exercise Data Analysis"),
dashboardPage(
dashboardHeader(title=""),
dashboardSidebar(
sidebarMenu(
menuItem("All Data",
tabName = "AllData",
icon=icon("table")
),
menuItem("Trainer Boxplots",
tabName = "trainbox",
icon=icon("dumbbell")
),
selectInput(inputId = "trainerselect",label="Select a Trainer:",choices=TrainerChoices)
)
),
dashboardBody(
tabItems(
tabItem(
tabName = "AllData",
DTOutput("alldata")
),
tabItem(
tabName = "trainbox",
plotOutput("trainbox")
))
)
)
)
# Define server logic
server <- function(input, output) {
#----------ALL DATA TABLE----------#
output$alldata=renderDT({
datatable(Table1,options=list(pageLength=10,
lengthMenu=c(10,15,20,25)
),rownames = FALSE)
})
#---------- TRAINER BOXPLOTS ----------#
TrainData=reactive({
NewDummy=ifelse(data$Trainer2==input$TrainerChoices,input$TrainerChoices,"Other")
return(NewDummy)
})
output$trainbox=renderPlot({
plot=ggplot(TrainData(),aes(y=Calories,x=as.factor(NewDummy)))+geom_boxplot(aes(col=as.factor(NewDummy)))
plot
})
}
# Run the application
shinyApp(ui = ui, server = server)
When I run this code, the All Data tab appears just fine, but I can't get the Trainer Boxplots to show up appropriately. The page appears with an error that reads:
`data` must be a data frame, or other object coercible by `fortify()`, not a logical vector
Can someone please help point me in the right direction? Any help would be appreciated! Thank you!
Upvotes: 0
Views: 388
Reputation: 30474
I'm not sure this is what you intended, but perhaps this will be helpful.
First, your selectInput
in ui
has an id of trainerselect
, so you need to access through input$trainerselect
not TrainerChoices
.
Your TrainData
reactive expression will return a character value (a trainer name or "Other"); I assume you want to use data
for your source of data, not this. NewDummy
is a local variable in the reactive expression. Perhaps that is what you want from TrainData()
.
If I'm mistaken/confused, please let me know.
server <- function(input, output) {
#----------ALL DATA TABLE----------#
output$alldata=renderDT({
datatable(Table1,options=list(pageLength=10,
lengthMenu=c(10,15,20,25)
),rownames = FALSE)
})
#---------- TRAINER BOXPLOTS ----------#
TrainData=reactive({
NewDummy=ifelse(data$Trainer2==input$trainerselect,input$trainerselect,"Other")
return(NewDummy)
})
output$trainbox=renderPlot({
NewDummy <- TrainData()
plot=ggplot(data,aes(y=Calories,x=as.factor(NewDummy)))+
geom_boxplot(aes(col=as.factor(NewDummy)))
plot
})
}
Upvotes: 1