Reputation: 21
I have come across a number of plots (end of page) that are very similar to scatter / swarm plots which jitter the y-axis in order avoid overlapping dots / bubbles.
How can I get the y values (ideally in an array) based on a given set of x and z values (dot sizes)?
I found the python circlify
library but it's not quite what I am looking for.
Example of what I am trying to create
EDIT: For this project I need to be able to output the x, y and z
values so that they can be plotted in the user's tool of choice. Therefore I am more interested in solutions that generate the y-coords rather than the actual plot.
Upvotes: 2
Views: 1784
Reputation: 1866
I created an Observable notebook to calculate the y values of a beeswarm plot with variable-sized circles. The image below gives an example of the results.
If you need to use the JavaScript code in a script, it should be straightforward to copy and paste the code for the AccurateBeeswarm
class.
The algorithm simply places the points one by one, as close as possible to the x=0 line while avoiding overlaps. There are also options to add a little randomness to improve the appearance. x values are never altered; this is the one big advantage of this approach over force-directed algorithms such as the one used by RAWGraphs.
Upvotes: 0
Reputation: 69242
Answer:
What you describe in your text is known as a swarm plot
(or beeswarm plot
) and there are python implementations of these (esp see seaborn), but also, eg, in R. That is, these plots allow adjustment of the y-position of each data point so they don't overlap, but otherwise are closely packed.
Discussion:
But the plots that you show aren't standard swarm plots (which almost always have the weird looking "arms"), but instead seem to be driven by some type of physics engine which allows for motion along x as well as y, which produces the well packed structures you see in the plots (eg, like a water drop on a spiders web).
That is, in the plot above, by imagining moving points only along the vertical axis so that it packs better, you can see that, for the most part, you can't really do it. (Honestly, maybe the data shown could be packed a bit better, but not dramatically so -- eg, the first arm from the left couldn't be improved, and if any of them could, it's only by moving one or two points inward). Instead, to get the plot like you show, you'll need some motion in x
, like would be given by some type of physics engine, which hopefully is holding x close to its original value, but also allows for some variation. But that's a trade-off that needs to be decided on a data level, not a programming level.
For example, here's a plotting library, RAWGraphs, which produces a compact beeswarm plot like the Politico graphs in the question:
But critically, they give the warning:
"It’s important to keep in mind that a Beeswarm plot uses forces to avoid collision between the single elements of the visual model. While this helps to see all the circles in the visualization, it also creates some cases where circles are not placed in the exact position they should be on the linear scale of the X Axis."
Or, similarly, in notes from this this D3 package: "Other implementations use force layout, but the force layout simulation naturally tries to reach its equilibrium by pushing data points along both axes, which can be disruptive to the ordering of the data." And here's a nice demo based on D3 force layout where sliders adjust the relative forces pulling the points to their correct values.
Therefore, this plot is a compromise between a swarm plot and a violin plot (which shows a smoothed average for the distribution envelope), but both of those plots give an honest representation of the data, and in these plots, these closely packed plots representation comes at a cost of a misrepresentation of the x-position of the individual data points. Their advantage seems to be that you can color and click on the individual points (where, if you wanted you could give the actual x-data, although that's not done in the linked plots).
Personally, I'm really hesitant to misrepresent the data in some unknown way (that's the outcome of a physics engine calculation but not obvious to the reader). Maybe a better compromise would be a violin filled with non-circular patches, or something like a Raincloud plot.
Upvotes: 3