Reputation: 215
I have multi-output
out = [Dense(19, name='one', activation='softmax')(out),
Dense(19, name='two', activation='softmax')(out),
Dense(19, name='three', activation='softmax')(out),
Dense(19, name='four', activation='softmax')(out)]
model.fit(reshape_train_X, y_onehot, batch_size=400, epochs=100, verbose=2,
validation_split=0.2, callbacks=callbacks_list)
This is my y_onehot format:
[array([[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]],
dtype=uint8), array([[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]],dtype=uint8),.....]
And I got this error message
ValueError: Error when checking model target: the list of Numpy arrays that you are passing to your model is not the size the model expected. Expected to see 4 array(s), but instead got the following list of 5000 arrays: [array([[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
...
I don't know why this error occurs when y_onehot has four lists in the array.
len(y_onehot): 5000
print("y_onehot", y_onehot[0])
[[1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]]
print("y_onehot", len(y_onehot[0]))
y_onehot 4
I try this . But still didn't work.
Thanks for your help.
Upvotes: 2
Views: 1179
Reputation: 22031
this is a dummy example. pay attention to your y. you have to pass in fit each output separated
inp = Input((50))
x = Dense(32)(inp)
x1 = Dense(19, name='one', activation='softmax')(x)
x2 = Dense(19, name='two', activation='softmax')(x)
x3 = Dense(19, name='three', activation='softmax')(x)
x4 = Dense(19, name='four', activation='softmax')(x)
model = Model(inp, [x1,x2,x3,x4])
model.compile('adam', 'categorical_crossentropy')
X = np.random.uniform(0,1, (5000,50))
y1 = np.random.randint(0,2, (5000,19))
y2 = np.random.randint(0,2, (5000,19))
y3 = np.random.randint(0,2, (5000,19))
y4 = np.random.randint(0,2, (5000,19))
model.fit(X, [y1,y2,y3,y4], epochs=10)
Upvotes: 1