Regression1234
Regression1234

Reputation: 21

Is there a way to remove excess spacing in Python code?

My code below gets the street address for each gym, but there is an error in the spacing of the output for the hours that the gym is open. Any ideas of where I went wrong?

import urlparse

from bs4 import BeautifulSoup
from bs4 import Tag
import requests
import time
import csv

sitemap = 'https://www.planetfitness.com/sitemap'
sitemap_content = requests.get(sitemap).content
soup = BeautifulSoup(sitemap_content, 'html.parser')

atags = soup.select('td[class~=club-title] > a[href^="/gyms"]')
links = [atag.get('href') for atag in atags]

with open('gyms.csv', 'w') as gf:
    gymwriter = csv.writer(gf)
    for link in links:
        gymurl = urlparse.urljoin(sitemap, link)
        sitemap_content = requests.get(gymurl).content
        soup = BeautifulSoup(sitemap_content, 'html.parser')
        gymrow = [ gymurl ]

        address_line1 = soup.select('p[class~=address] > span[class~=address-line1]')
        gymrow.append(address_line1[0].text)
        locality = soup.select('p[class~=address] > span[class~=locality]')
        gymrow.append(locality[0].text)
        administrative_area = soup.select('p[class~=address] > span[class~=administrative-area]')
        gymrow.append(administrative_area[0].text)
        postal_code = soup.select('p[class~=address] > span[class~=postal-code]')
        gymrow.append(postal_code[0].text)
        country = soup.select('p[class~=address] > span[class~=country]')
        gymrow.append(country[0].text)

        strongs = soup.select('div > strong')
        for strong in strongs:
            if strong.text == 'Club Hours':
                for sibling in strong.next_siblings:
                    if isinstance(sibling, Tag):
                        hours = sibling.text
                        gymrow.append(hours)
                        break
        print(gymrow)
        gymwriter.writerow(gymrow)
        time.sleep(3)

Thank you for your help!

Upvotes: -1

Views: 168

Answers (3)

Rusty Widebottom
Rusty Widebottom

Reputation: 984

You want to select the td elements (of class club-title) that contain a elements, and extract the href attribute.

from bs4 import BeautifulSoup
from bs4 import Tag
import requests
import urllib.parse
import time
import csv

sitemap = 'https://www.planetfitness.com/sitemap'
res = requests.get(sitemap).content
soup = BeautifulSoup(res, 'html.parser')

# The rows in the table of gyms are formatted like so:
# <tr>
# <td class="club-title"><a href="/gyms/albertville-al"><strong>Albertville, AL</strong> <p>5850 US Hwy 431</p></a></td>
# <td class="club-join"><div class="button"><a href="/gyms/albertville-al/offers" title="Join Albertville, AL">Join Now</a></div></td>
# </tr>

# This will find all the links to all the gyms.
atags = soup.select('td[class~=club-title] > a[href^="/gyms"]')
links = [atag.get('href') for atag in atags]

with open('gyms.csv', 'w') as gf:
    gymwriter = csv.writer(gf)
    for link in links:
        # Follow the link to this gym
        gymurl = urllib.parse.urljoin(sitemap, link)
        res = requests.get(gymurl).content
        soup = BeautifulSoup(res, 'html.parser')
        gymrow = [ gymurl ]

        # The address of this gym.
        address_line1 = soup.select('p[class~=address] > span[class~=address-line1]')
        gymrow.append(address_line1[0].text)
        locality = soup.select('p[class~=address] > span[class~=locality]')
        gymrow.append(locality[0].text)
        administrative_area = soup.select('p[class~=address] > span[class~=administrative-area]')
        gymrow.append(administrative_area[0].text)
        postal_code = soup.select('p[class~=address] > span[class~=postal-code]')
        gymrow.append(postal_code[0].text)
        country = soup.select('p[class~=address] > span[class~=country]')
        gymrow.append(country[0].text)

        # The hours of this gym.
        strongs = soup.select('div > strong')
        for strong in strongs:
            if strong.text == 'Club Hours':
                for sibling in strong.next_siblings:
                    if isinstance(sibling, Tag):
                        hours = sibling.text
                        gymrow.append(hours.replace('<br>', '').replace('\n', ', '))
                        break

        gymwriter.writerow(gymrow)
        time.sleep(3)

When I run this, I get:

$ more gyms.csv

https://www.planetfitness.com/gyms/albertville-al,5850 US Hwy 431,Albertville,AL,35950,United States,"Monday-Friday 6am-9pm, Sat
urday-Sunday 7am-7pm"
https://www.planetfitness.com/gyms/alexander-city-al,987 Market Place,Alexander City,AL,35010,United States,Convenient hours whe
n we reopen
https://www.planetfitness.com/gyms/bessemer-al,528 W Town Plaza,Bessemer,AL,35020,United States,Convenient hours when we reopen
https://www.planetfitness.com/gyms/birmingham-crestline-al,4500 Montevallo Rd,Birmingham,AL,35210,United States,Convenient hours
 when we reopen
.
.
.

Upvotes: 1

Adin D
Adin D

Reputation: 673

This will get every link and address on that page. It looks like if you want to find more information on each club you'll have to iteratively go through and load each page.

from bs4 import BeautifulSoup
import requests

res = requests.get("https://www.planetfitness.com/sitemap").content
soup = BeautifulSoup(res, 'html.parser')

atags = soup.find_all('td', {'class':'club-title'})

links = [(atag.find('a')['href'], atag.find('p').text) for atag in atags)]


[print(link) for link in links]

Upvotes: 0

Sri
Sri

Reputation: 2318

To try debugging this, you should start by printing out the value of atags. You are searching for all a tags with the class clubs-list of which none exist. The a tags do not have a class, but their parent td has the class club-title.

You can try something like this.

res = requests.get("https://www.planetfitness.com/sitemap").content
soup = BeautifulSoup(res, 'html.parser')

tds = soup.find_all('td', {'class': 'club-title'})
links = [td.find('a')['href'] for td in tds]
keywords = ['gyms']

for link in links:
    if any(keyword in link for keyword in keywords):
        print(link)

Upvotes: 0

Related Questions