Reputation: 41290
I'm studying multicore parallelism in F#. I have to admit that immutability really helps to write correct parallel implementation. However, it's hard to achieve good speedup and good scalability when the number of cores grows. For example, my experience with Quick Sort algorithm is that many attempts to implement parallel Quick Sort in a purely functional way and using List
or Array
as the representation are failed. Profiling those implementations shows that the number of cache misses increases significantly compared to those of sequential versions. However, if one implements parallel Quick Sort using mutation inside arrays, a good speedup could be obtained. Therefore, I think mutation might be a good practice for optimizing multicore parallelism.
I believe that cache locality is a big obstacle for multicore parallelism in a functional language. Functional programming involves in creating many short-lived objects; destruction of those objects may destroy coherence property of CPU caches. I have seen many suggestions how to improve cache locality in imperative languages, for example, here and here. But it's not clear to me how they would be done in functional programming, especially with recursive data structures such as trees, etc, which appear quite often.
Are there any techniques to improve cache locality in an impure functional language (specifically F#)? Any advices or code examples are more than welcome.
Upvotes: 26
Views: 3423
Reputation: 193
You may get some ideas from these:
Cache-Oblivious http://supertech.csail.mit.edu/cacheObliviousBTree.html Cache-Oblivious Search Trees Project
DSapce@MIT Cache coherence strategies in a many-core processor http://dspace.mit.edu/handle/1721.1/61276
Upvotes: 1
Reputation: 2364
As far as I can make out, the key to cache locality (multithreaded or otherwise) is
To this end ;
In practice this means that you may end up using data structures that are not theoretically perfect examples of computer science - but that's all right, computers aren't theoretically perfect examples of computer science either.
A good academic paper on the subject is Cache-Efficient String Sorting Using Copying
Upvotes: 26
Reputation: 2167
A great approach is to split the work into smaller sections and iterate over each section on each core.
One option I would start with is to look for cache locality improvements on a single core before going parallel, it should be simply a matter of subdividing the work again for each core. For example if you are doing matrix calculations with large matrices then you could split up the calculations into smaller sections.
Heres a great example of that: Cache Locality For Performance
There were some great sections in Tomas Petricek's book Real Work functional programming, check out Chapter 14 Writing Parallel Functional Programs, you might find Parallel processing of a binary tree of particular interest.
Upvotes: 3
Reputation: 13545
To write scalable Apps cache locality is paramount to your application speed. The principles are well explain by Scott Meyers talk. Immutability does not play well with cache locality since you create new objects in memory which forces the CPU to reload the data from the new object again. As in the talk is noted even on modern CPUs the L1 cache has only 32 KB size which is shared for code and data between all cores. If you go multi threaded you should try to consume as little memory as possible (goodbye immutabilty) to stay in the fastest cache. The L2 cache is about 4-8 MB which is much bigger but still tiny compared to the data you are trying to sort.
If you manage to write an application which consumes as little memory as possible (data cache locality) you can get speedups of 20 or more. But if you manage this for 1 core it might be very well be that scaling to more cores will hurt performance since all cores are competing for the same L2 cache.
To get most out of it the C++ guys use PGA (Profile Guided Optimizations) which allows them to profile their application which is used as input data for the compiler to emit better optimized code for the specific use case.
You can get better to certain extent in a managed code but since so many factors influence your cache locality it is not likely that you will ever see a speedup of 20 in the real world due to total cache locality. This remains the regime of C++ and compilers which use profiling data.
Upvotes: 2
Reputation: 2380
I am no parallelism expert, but here is my advice anyway.
Upvotes: 3
Reputation: 8007
Allowing mutability within functions in F# is a blessing, but it should only be used when optimizing code. Purely-functional style often yields more intuitive implementation, and hence is preferred.
Here's what a quick search returned: Parallel Quicksort in Haskell. Let's keep the discussion about performance focused on performance. Choose a processor, then bench it with a specific algorithm.
To answer your question without specifics, I'd say that Clojure's approach to implementing STM could be a lesson in general case on how to decouple paths of execution on multicore processors and improve cache locality. But it's only effective when number of reads outweigh number of writes.
Upvotes: 3