Reputation: 67
I need to implement face recognition using azure face api . I have developed a programme which is able to find similiar faces using .net SDK . For my use case ,I need to click photo of a person from the webcam and find matching faces from images kept in azure cloud storage . Now, there could be thousand of images in azure cloud storage and in my current implementation of face recognition ,I'm iterating through all the images(kept in azure cloud storage ) and then matching them with the webcam image . The concern here is : The face api (provided by azure ) charges 1 dollar per thousand call . Is there a way the search could be optimized such that i don't have to scan the faces which i have already scanned for previous searches
public async Task<List<DetectedFaceAttributes>> FindSimiliarFacesWithAttributesFromContainer(IFaceClient client, string RECOGNITION_MODEL1, string sourceImageFileName)
{
string url = BlobBaseURL;
string sourceurl = sourceContainerURL;
var imagesInNovotraxContainer = await _blobService.GetNames();
IList<Guid?> targetFaceIds = new List<Guid?>();
var faceList = new List<DetectedFaceAttributes>();
// Detect faces from source image url.
IList<DetectedFace> detectedFaces = await DetectFaceRecognize(client, $"{sourceurl}{sourceImageFileName}", RECOGNITION_MODEL1);
if (detectedFaces.Any())
{
foreach (var targetImageFileName in imagesInNovotraxContainer)
{
var faceattribute = new DetectedFaceAttributes();
// Detect faces from target image url.
var faces = await DetectFaceRecognizeWithAttributes(client, $"{url}{targetImageFileName}");
// Add detected faceId to list of GUIDs.
if (faces.Any())
{
targetFaceIds.Add(faces[0].FaceId.Value);
faceattribute.DetectedFace = faces[0];
faceattribute.ImageFileName = targetImageFileName;
faceList.Add(faceattribute);
}
}
// Find a similar face(s) in the list of IDs. Comapring only the first in list for testing purposes.
IList<SimilarFace> similarResults = await client.Face.FindSimilarAsync(detectedFaces[0].FaceId.Value, null, null, targetFaceIds);
var similiarFaceIDs = similarResults.Select(y => y.FaceId).ToList();
var returnDataTypefaceList = faceList.Where(x => similiarFaceIDs.Contains(x.DetectedFace.FaceId.Value)).ToList();
return returnDataTypefaceList;
}
else
{
throw new Exception("no face detected in captured photo ");
}
public async Task<List<DetectedFace>> DetectFaceRecognize(IFaceClient faceClient, string url, string RECOGNITION_MODEL1)
{
// Detect faces from image URL. Since only recognizing, use the recognition model 1.
IList<DetectedFace> detectedFaces = await faceClient.Face.DetectWithUrlAsync(url, recognitionModel: RECOGNITION_MODEL1);
//if (detectedFaces.Any())
//{
// Console.WriteLine($"{detectedFaces.Count} face(s) detected from image `{Path.GetFileName(url)}` with ID : {detectedFaces.First().FaceId}");
//}
return detectedFaces.ToList();
}
Upvotes: 0
Views: 843
Reputation: 14599
Your implementation is not totally clear for me in terms of calls to Face API / your storage (what's behind "DetectFaceRecognizeWithAttributes"). But I think you are right in the fact that you missed something and your global processing is over costly.
What you should do depends on your target:
Both have the same logic, but they are using different API operations
The global process is the following: you will use a "Person Group" or "Large Person Group" (depending of the number of persons you have) to store data about faces that you already know (the one in you storage), and you will use this group to "identify" a new face. with that, you will do "1-n" search, not "1-1" as you do right now.
Choose if you need Person Group or Large Person group, here are the actual limits depending on your pricing:
Here I am using Person Group in the explanation, but it's the same methods.
When you know the one you need, create it using "Create" operation. Then, for each person, you will have to create a "PersonGroup Person" using "PersonGroup Person - Create", and add the corresponding faces to it using "PersonGroup Person - Add Face". Once it is done, you never need to reprocess "detect" operation on those faces.
When you have a new image that you want to compare:
Detect
endpoint of Face APIIdentify
endpoint of Face API to try to identify those face Ids with your (large) person groupTo limit the number of call, you can even do batches of identification calls (up to 10 "input" face Ids in 1 call - see doc).
Here you can use a "Face List" or "Large Face List" to store the faces that you already know, and pass the id of this list when calling "Find Similar" operation. Example with FaceList:
Upvotes: 1