Reputation: 9158
In my Spark job (spark 2.4.1) , I am reading CSV files on S3.These files contain Japanese characters.Also they can have ^M character (u000D) so I need to parse them as multiline.
First I used following code to read CSV files:
implicit class DataFrameReadImplicits (dataFrameReader: DataFrameReader) {
def readTeradataCSV(schema: StructType, s3Path: String) : DataFrame = {
dataFrameReader.option("delimiter", "\u0001")
.option("header", "false")
.option("inferSchema", "false")
.option("multiLine","true")
.option("encoding", "UTF-8")
.option("charset", "UTF-8")
.schema(schema)
.csv(s3Path)
}
}
But when I read DF using this method all the Japanese characters are garbled.
After doing some tests I found out that If I read the same S3 file using "spark.sparkContext.textFile(path)" Japanese characters encoded properly.
So I tried this way :
implicit class SparkSessionImplicits (spark : SparkSession) {
def readTeradataCSV(schema: StructType, s3Path: String) = {
import spark.sqlContext.implicits._
spark.read.option("delimiter", "\u0001")
.option("header", "false")
.option("inferSchema", "false")
.option("multiLine","true")
.schema(schema)
.csv(spark.sparkContext.textFile(s3Path).map(str => str.replaceAll("\u000D"," ")).toDS())
}
}
Now the encoding issue is fixed.However multilines doesn't work properly and lines are broken near ^M character , even though I tried to replace ^M using str.replaceAll("\u000D"," ")
Any tips on how to read Japanese characters using first method, or handle multi-lines using the second method ?
UPDATE: This encoding issue happens when the app runs on the Spark cluster.When I ran the app locally, reading the same S3 file, encoding works just fine.
Upvotes: 1
Views: 1393
Reputation: 9067
Some things are in the code but not (yet) in the docs. Did you try setting explicitly your line separator, thus avoiding the "multiline" workaround because of ^M
?
From the unit tests for Spark "TextSuite" branch 2.4
https://github.com/apache/spark/blob/branch-2.4/sql/core/src/test/scala/org/apache/spark/sql/execution/datasources/text/TextSuite.scala
def testLineSeparator(lineSep: String): Unit = {
test(s"SPARK-23577: Support line separator - lineSep: '$lineSep'") {
...
}
// scalastyle:off nonascii
Seq("|", "^", "::", "!!!@3", 0x1E.toChar.toString, "아").foreach { lineSep =>
testLineSeparator(lineSep)
}
// scalastyle:on nonascii
From the source code for CSV options parsing, branch 3.0
https://github.com/apache/spark/blob/branch-3.0/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/csv/CSVOptions.scala
val lineSeparator: Option[String] = parameters.get("lineSep").map { sep =>
require(sep.nonEmpty, "'lineSep' cannot be an empty string.")
require(sep.length == 1, "'lineSep' can contain only 1 character.")
sep
}
val lineSeparatorInRead: Option[Array[Byte]] = lineSeparator.map { lineSep =>
lineSep.getBytes(charset)
}
So, looks like CSV does not support strings for line delimiters, just single characters, because it relies on some Hadoop library. I hope that's fine in your case.
SPARK-21289 Text based formats do not support custom end-of-line delimiters ...
SPARK-23577 specific to text datasource > fixed in V2.4.0
Upvotes: 1
Reputation: 11
if your data is enclosed by double quote then you can use escape property.
df = (spark.read
.option("header", "false")
.csv("******",multiLine=True, escape='"')
)
Upvotes: 0