Reputation: 809
I have the following command which returns a Pandas Series as its output:
def run_ttest():
for key,value in enumerate(data['RegionName']):
if value in stateslist:
indexing = data['differ'].iloc[key]
Townames.append(indexing)
else:
indexing = data['differ'].iloc[key]
Notowns.append(indexing)
Unitowns['Unitownvalues'] = Townames
Notunitowns['Notunitownvalues'] = Notowns
Notunitowns['Notunitownvalues'] = Notunitowns['Notunitownvalues']
Unitowns['Unitownvalues'] = Unitowns['Unitownvalues']
return Unitowns['Unitownvalues']
run_ttest()
The output prints the series Unitowns['Unitownvalues']
:
0 -32000.000000
1 -16200.000000
2 -12466.666667
3 -14600.000000
4 633.333333
5 -10600.000000
6 -6466.666667
7 800.000000
8 -3066.666667
9 NaN
10 1566.666667
11 10633.333333
12 6466.666667
13 1333.333333
14 -15233.333333
15 -11833.333333
16 -3200.000000
17 -1566.666667
18 -8333.333333
19 5166.666667
20 5033.333333
21 -6166.666667
22 -16366.666667
23 -22266.666667
24 -112766.666667
25 2566.666667
26 3000.000000
27 -5666.666667
28 NaN
Name: Unitownvalues, dtype: float64
I have tried the following:
Notunitowns['Notunitownvalues'] = Notunitowns['Notunitownvalues'].s[~s.isnull()]
Unitowns['Unitownvalues'] = Unitowns['Unitownvalues'].s[~s.isnull()]
Notunitowns['Notunitownvalues'] = Notunitowns['Notunitownvalues'].dropna()
Unitowns['Unitownvalues'] = Unitowns['Unitownvalues'].dropna()
But neither of these attempts have been successful.
There was a prior suggestion on a previous post referring to the conversion of the datatype to 'float', but since the type already is 'float64', adding .astype(float) does not solve the issue.
Would anybody be willing to give me a helping hand?
Upvotes: 0
Views: 60
Reputation: 1766
Unitowns
is a dataframe? In that case, I would do:
Unitowns.dropna(subset=['Unitownvalues'])
This wil get you a dataframe with rows dropped where Unitownvalues
is na. If you just want the Series, Unitowns['Unitownvalues'].dropna()
will work, but you can't assign it right back to the dataframe, as that column will not match the length of the other columns I assume you have (I guess this is the Error you are having).
Edit: Does the following not work for you? If not, what is your error?
s = run_ttest()
s = s.dropna()
s
Upvotes: 1