Reputation: 1315
I normally work with lme4
package, but the glmmTMB
package is increasingly becoming better suited to work with highly complicated data (think overdispersion and/or zero-inflation).
Is there a way to extract posterior modes and credible intervals from glmmTMB
models, similar to how it is done for lme4
models (example here).
Details:
I am working with count data (available here) that are zero-inflated and overdispersed and have random effects. The package best suited to work with this sort of data is the glmmTMB
(details here). (Note two outliers: euc0==78
and np_other_grass==20
).
The data looks like this:
euc0 ea_grass ep_grass np_grass np_other_grass month year precip season prop_id quad
3 5.7 0.0 16.7 4.0 7 2006 526 Winter Barlow 1
0 6.7 0.0 28.3 0.0 7 2006 525 Winter Barlow 2
0 2.3 0.0 3.3 0.0 7 2006 524 Winter Barlow 3
0 1.7 0.0 13.3 0.0 7 2006 845 Winter Blaber 4
0 5.7 0.0 45.0 0.0 7 2006 817 Winter Blaber 5
0 11.7 1.7 46.7 0.0 7 2006 607 Winter DClark 3
The glmmTMB
model:
model<-glmmTMB(euc0 ~ ea_grass + ep_grass + np_grass + np_other_grass + (1|prop_id), data = euc, family= nbinom2) #nbimom2 lets var increases quadratically
summary(model)
confint(model) #this gives the confidence intervals
How I would normally extract the posterior mode and credible intervals for a lmer
/glmer
model:
#extracting model estimates and credible intervals
sm.model <-arm::sim(model, n.sim=1000)
smfixef.model = sm.model@fixef
smfixef.model =coda::as.mcmc(smfixef.model)
MCMCglmm::posterior.mode(smfixef.model) #mode of the distribution
coda::HPDinterval(smfixef.model) #credible intervals
#among-brood variance
bid<-sm.model@ranef$prop_id[,,1]
bvar<-as.vector(apply(bid, 1, var)) #between brood variance posterior distribution
bvar<-coda::as.mcmc(bvar)
MCMCglmm::posterior.mode(bvar) #mode of the distribution
coda::HPDinterval(bvar) #credible intervals
Upvotes: 4
Views: 1076
Reputation: 7832
I think Ben has already answered your question, so my answer does not add much to the discussion... Maybe just one thing, as you wrote in your comments that you're interested in the within- and between-group variances. You can get these information via parameters::random_parameters()
(if I did not misunderstand what you were looking for). See example below that first generates simulated samples from a multivariate normal (just like in Ben's example), and later gives you a summary of the random effect variances...
library(readr)
library(glmmTMB)
library(parameters)
library(bayestestR)
library(insight)
euc_data <- read_csv("D:/Downloads/euc_data.csv")
model <-
glmmTMB(
euc0 ~ ea_grass + ep_grass + np_grass + np_other_grass + (1 | prop_id),
data = euc_data,
family = nbinom2
) #nbimom2 lets var increases quadratically
# generate samples
samples <- parameters::simulate_model(model)
#> Model has no zero-inflation component. Simulating from conditional parameters.
# describe samples
bayestestR::describe_posterior(samples)
#> # Description of Posterior Distributions
#>
#> Parameter | Median | 89% CI | pd | 89% ROPE | % in ROPE
#> --------------------------------------------------------------------------------
#> (Intercept) | -1.072 | [-2.183, -0.057] | 0.944 | [-0.100, 0.100] | 1.122
#> ea_grass | -0.001 | [-0.033, 0.029] | 0.525 | [-0.100, 0.100] | 100.000
#> ep_grass | -0.050 | [-0.130, 0.038] | 0.839 | [-0.100, 0.100] | 85.297
#> np_grass | -0.020 | [-0.054, 0.012] | 0.836 | [-0.100, 0.100] | 100.000
#> np_other_grass | -0.002 | [-0.362, 0.320] | 0.501 | [-0.100, 0.100] | 38.945
# or directly get summary of sample description
sp <- parameters::simulate_parameters(model, ci = .95, ci_method = "hdi", test = c("pd", "p_map"))
sp
#> Model has no zero-inflation component. Simulating from conditional parameters.
#> # Description of Posterior Distributions
#>
#> Parameter | Coefficient | p_MAP | pd | CI
#> --------------------------------------------------------------
#> (Intercept) | -1.037 | 0.281 | 0.933 | [-2.305, 0.282]
#> ea_grass | -0.001 | 0.973 | 0.511 | [-0.042, 0.037]
#> ep_grass | -0.054 | 0.553 | 0.842 | [-0.160, 0.047]
#> np_grass | -0.019 | 0.621 | 0.802 | [-0.057, 0.023]
#> np_other_grass | 0.019 | 0.999 | 0.540 | [-0.386, 0.450]
plot(sp) + see::theme_modern()
#> Model has no zero-inflation component. Simulating from conditional parameters.
# random effect variances
parameters::random_parameters(model)
#> # Random Effects
#>
#> Within-Group Variance 2.92 (1.71)
#> Between-Group Variance
#> Random Intercept (prop_id) 2.1 (1.45)
#> N (groups per factor)
#> prop_id 18
#> Observations 346
insight::get_variance(model)
#> Warning: mu of 0.2 is too close to zero, estimate of random effect variances may be unreliable.
#> $var.fixed
#> [1] 0.3056285
#>
#> $var.random
#> [1] 2.104233
#>
#> $var.residual
#> [1] 2.91602
#>
#> $var.distribution
#> [1] 2.91602
#>
#> $var.dispersion
#> [1] 0
#>
#> $var.intercept
#> prop_id
#> 2.104233
Created on 2020-05-26 by the reprex package (v0.3.0)
Upvotes: 2
Reputation: 226741
Most of an answer:
arm::sim()
is doing.library(MASS)
pp <- fixef(model)$cond
vv <- vcov(model)$cond
samp <- MASS::mvrnorm(1000, mu=pp, Sigma=vv)
(then use the rest of your method above).
library(tmbstan)
library(rstan)
library(coda)
library(emdbook) ## for lump.mcmc.list(), or use runjags::combine.mcmc()
t2 <- system.time(m2 <- tmbstan(model$obj))
m3 <- rstan::As.mcmc.list(m2)
lattice::xyplot(m3,layout=c(5,6))
m4 <- emdbook::lump.mcmc.list(m3)
coda::HPDinterval(m4)
It may be helpful to know that the theta
column of m4
is the log of the among-group standard standard deviation ...
(See vignette("mcmc", package="glmmTMB")
for a little bit more information ...)
Upvotes: 3