user3874982
user3874982

Reputation: 53

How to have different schemas within parquet partitions

I have json files read into data frame. The json can have a struct field messages that is specific to name like below.

Json1
{
   "ts":"2020-05-17T00:00:03Z",
   "name":"foo",
   "messages":[
      {
         "a":1810,
         "b":"hello",
         "c":390
      }
   ]
}

Json2
{
   "ts":"2020-05-17T00:00:03Z",
   "name":"bar",
   "messages":[
      {
         "b":"my",
         "d":"world"
      }
   ]
}

when I read data from jsons into a Dataframe I get schema like below.

root
 |-- ts: string (nullable = true)
 |-- name: string (nullable = true)
 |-- messages: array (nullable = true)
 |    |-- element: struct (containsNull = true)
 |    |    |-- a: long (nullable = true)
 |    |    |-- b: string (nullable = true)
 |    |    |-- c: long (nullable = true)
 |    |    |-- d: string (nullable = true)

This is fine. Now when I save to parquet file partitioned by name, how can I have different schemas in foo and bar partitions?

path/name=foo
root
 |-- ts: string (nullable = true)
 |-- name: string (nullable = true)
 |-- messages: array (nullable = true)
 |    |-- element: struct (containsNull = true)
 |    |    |-- a: long (nullable = true)
 |    |    |-- b: string (nullable = true)
 |    |    |-- c: long (nullable = true)

path/name=bar
root
 |-- ts: string (nullable = true)
 |-- name: string (nullable = true)
 |-- messages: array (nullable = true)
 |    |-- element: struct (containsNull = true)
 |    |    |-- b: string (nullable = true)
 |    |    |-- d: string (nullable = true)

I am fine if I get schema with all fields of foo and bar when I read data from root path. But when I read data from path/name=foo, I am expecting just foo schema.

Upvotes: 1

Views: 2310

Answers (2)

Shubham Jain
Shubham Jain

Reputation: 5526

You can alter the schema before saving the dataframe in partitions, for this you have to filter partition records and then save them in respective folders

#this will select only not null columns which will drop col d from foo and a,c from bar
df = df.filter(f.col('name')='foo').select(*[c for c in df.columns if df.filter(f.col(c).isNotNull()).count() > 0])

#then save the df
df.write.json('path/name=foo')

Now every partition will be having different schema.

Upvotes: 0

notNull
notNull

Reputation: 31490

1. Partitioning & Storing as Parquet file:

If you save as parquet format then while reading path/name=foo specify the schema including all the required fields(a,b,c), Then spark only loads those fields.

  • If we won't specify schema then all fields(a,b,c,d) are going to be included in the dataframe

EX:

schema=define structtype...schema
spark.read.schema(schema).parquet(path/name=foo).printSchema()

2.Partitioning & Storing as JSON/CSV file:

Then Spark won't add b,d columns into path/name=foo files, so when we read only the name=foo directory we won't get b,d columns included in the data.

EX:

spark.read.json(path/name=foo).printSchema()
spark.read.csv(path/name=foo).printSchema()

Upvotes: 3

Related Questions