Reputation: 41
I have a dataframe fulldb_accrep_united
of such kind:
SparkID ... Period
0 913955 ... {"@PeriodName": "2000", "@DateBegin": "2000-01...
1 913955 ... {"@PeriodName": "1999", "@DateBegin": "1999-01...
2 16768 ... {"@PeriodName": "2007", "@DateBegin": "2007-01...
3 16768 ... {"@PeriodName": "2006", "@DateBegin": "2006-01...
4 16768 ... {"@PeriodName": "2005", "@DateBegin": "2005-01...
I need to convert Period
column, which is now column of strings into a column of json
values. Usually I do it with df.apply(lambda x: json.loads(x))
, but this dataframe is too large to process it as a whole. I want to use dask
, but I seem to miss something important. I think I don't understand how to use apply
in dask
, but I can't find out the solution.
The codes
This is how I supposed to do it if using Pandas with all df in memory:
#%% read df
os.chdir('/opt/data/.../download finance/output')
fulldb_accrep_united = pd.read_csv('fulldb_accrep_first_download_raw_quotes_corrected.csv', index_col = 0, encoding = 'utf-8')
os.chdir('..')
#%% Deleting some freaky symbols from column
condition = fulldb_accrep_united['Period'].str.contains('\\xa0', na = False, regex = False)
fulldb_accrep_united.loc[condition.values, 'Period'] = fulldb_accrep_united.loc[condition.values, 'Period'].str.replace('\\xa0', ' ', regex = False).values
#%% Convert to json
fulldb_accrep_united.loc[fulldb_accrep_united['Period'].notnull(), 'Period'] = fulldb_accrep_united['Period'].dropna().apply(lambda x: json.loads(x))
This is the code where i try to use dask
:
#%% load data with dask
os.chdir('/opt/data/.../download finance/output')
fulldb_accrep_united = dd.read_csv('fulldb_accrep_first_download_raw_quotes_corrected.csv', encoding = 'utf-8', blocksize = 16 * 1024 * 1024) #16Mb chunks
os.chdir('..')
#%% setup calculation graph. No work is done here.
def transform_to_json(df):
condition = df['Period'].str.contains('\\xa0', na = False, regex = False)
df['Period'] = df['Period'].mask(condition.values, df['Period'][condition.values].str.replace('\\xa0', ' ', regex = False).values)
condition2 = df['Period'].notnull()
df['Period'] = df['Period'].mask(condition2.values, df['Period'].dropna().apply(lambda x: json.loads(x)).values)
result = transform_to_json(fulldb_accrep_united)
The last cell here gives error:
NotImplementedError: Series getitem in only supported for other series objects with matching partition structure
What I do wrong? I tried to find similar topics for almost 5 hours, but I think I am missing something important, cause I am new to the topic.
Upvotes: 3
Views: 1679
Reputation: 57271
Your question was long enough that I didn't read through all of it. My apologies. See https://stackoverflow.com/help/minimal-reproducible-example
However, based on the title, it may be that you want to apply the json.loads function across every element in a dataframe's column
df["column-name"] = df["column-name"].apply(json.loads)
Upvotes: 1