Reputation: 803
I have a linear optimization problem, which can be expressed in a cost function code like this:
value_to_minimize = 0.0;
for i in range(0, len(v_1)):
value_to_minimize += np.abs(v_1[i] - (v_2[i] * c1 + v_3[i] * c2 + v_4[i] * c3));
The task of the solver should be to find values for the variables c1
, c2
, c3
which minimize the value. As boundary conditions, c1
, c2
, c3
together should result in 1.0 and not be negative.
v_1
, v_2
, v_3
and v_4
are vectors with 10000 float values.
Here is the outline to solve this minimization problem in cvxpy, but without the parameter pass in cp.Minimize(...):
V1 = np.array(v_1).reshape(10000, 1)
V2 = np.array(v_2 + v_3 + v_4).reshape(10000, 3)
c = cp.Variable((3,1),nonneg=True)
prob = cp.Problem(cp.Minimize(..., # ???
[sum(c) == 1]))
prob.solve(verbose=True)
How would the minimize function for cvxpy look in that case?
Upvotes: 4
Views: 3510
Reputation: 2759
If you don't mind using another library, I would recommend scipy
for this one:
from scipy.optimize import minimize
import numpy as np
def OF(x0, v_1, v_2, v_3, v_4):
value_to_minimize = 0.0
for i in range(0, len(v_1)):
value_to_minimize += np.abs(v_1[i] - (v_2[i] * x0[0] + v_3[i] * x0[1] + v_4[i] * x0[2]))
return value_to_minimize
if __name__ == '__main__':
x0 = np.array([0, 0, 0])
v_1 = np.random.randint(10, size = 10000)
v_2 = np.random.randint(10, size = 10000)
v_3 = np.random.randint(10, size = 10000)
v_4 = np.random.randint(10, size = 10000)
minx0 = np.repeat(0, [len(x0)] , axis = 0)
maxx0 = np.repeat(np.inf, [len(x0)] , axis = 0)
bounds = tuple(zip(minx0, maxx0))
cons = {'type':'eq',
'fun':lambda x0: 1 - sum(x0)}
res_cons = minimize(OF, x0, (v_1, v_2, v_3, v_4), bounds = bounds, constraints=cons, method='SLSQP')
print(res_cons)
print('Current value of objective function: ' + str(res_cons['fun']))
print('Current value of controls:')
print(res_cons['x'])
Output is:
fun: 27919.666908810435
jac: array([5092. , 5672. , 5108.39868164])
message: 'Optimization terminated successfully.'
nfev: 126
nit: 21
njev: 21
status: 0
success: True
x: array([0.33333287, 0.33333368, 0.33333345])
Current value of objective function: 27919.666908810435
Current value of controls:
[0.33333287 0.33333368 0.33333345]
But obviously the actual values here do not mean much since I just used random integers for the v_
values... just a demo that this model would meet your constraint of c
values adding to 1 and boundary of not less than zero (negative).
edit update: did not look at the OF/constraints closely enough to realize this was a linear problem... should be using a linear solver algorithm (though, you can use a nonlinear, it's overkill though).
scipy
's linear solvers are not great for complex optimization problems like this one, reverting back to cvxpy
:
import numpy as np
import cvxpy as cp
# Create two scalar optimization variables.
x = cp.Variable()
y = cp.Variable()
z = cp.Variable()
v_1 = np.random.randint(10, size = 10000)
v_2 = np.random.randint(10, size = 10000)
v_3 = np.random.randint(10, size = 10000)
v_4 = np.random.randint(10, size = 10000)
constraints = [x + y + z == 1, x >= 0, y >= 0, z >= 0]
objective = cp.Minimize(cp.sum(cp.abs(v_1 - (v_2 * x + v_3 * y + v_4 * z))))
prob = cp.Problem(objective, constraints)
print("Value of OF:", prob.solve())
print('Current value of controls:')
print(x.value, y.value, z.value)
output:
Value of OF: 27621.999978414093
Current value of controls:
0.3333333333016109 0.33333333406414983 0.3333333326298208
Upvotes: 5
Reputation: 998
I strongly recommend removing one of the parameters and a constraint. If you know that c1 + c2 + c3 = 1.
, then use c3 = 1. - c1 - c2
! This makes the task of minimizer much easier. Also if v_1
etc. are numpy arrays, then use them as arrays, e.g.,
c3 = 1. - c1 - c2
value_to_minimize = np.sum(np.abs(v_1 - (v_2 * c1 + v_3 * c2 + v_4 * c3)))
Upvotes: 0