Reputation: 45
I have 2 dataframes (df_1) containing 2 rows and 100 columns and df_2 containing 70 rows and 100 columns. I want to append the 2 additional rows of df_1 to the 70 rows of df_2
df_1
0 1 2 3 4 5
first_point 458.69 457.71 420.82 482.50 501.89 405.89
max_point 3654.07 8134.25 7520.39 6913.17 7564.12 5883.32
df_2
Mean1 Mean2 Mean3 Mean4 Mean5 Mean6
0 458.69 457.71 420.82 482.50 501.89 405.89
1 437.92 339.23 287.35 462.16 405.46 387.76
2 443.19 303.66 314.83 461.07 349.54 399.97
3 416.03 315.33 317.84 456.53 390.97 374.84
4 406.89 306.29 328.26 457.55 456.30 398.38
I want to append the 2 additional rows of df_1 to the 70 rows of df_2 into df_3
0 1 2 3 4 5
first_point 458.69 457.71 420.82 482.50 501.89 405.89
max_point 3654.07 8134.25 7520.39 6913.17 7564.12 5883.32
0 458.69 457.71 420.82 482.50 501.89 405.89
1 437.92 339.23 287.35 462.16 405.46 387.76
2 443.19 303.66 314.83 461.07 349.54 399.97
3 416.03 315.33 317.84 456.53 390.97 374.84
4 406.89 306.29 328.26 457.55 456.30 398.38
I have used
df_3 =df_1.append(df_2)
0 1 2 3 4 5 6 \
first_point 458.69 457.71 420.82 482.50 501.89 405.89 480.77
max_point 3654.07 8134.25 7520.39 6913.17 7564.12 5883.32 5849.17
0 NaN NaN NaN NaN NaN NaN NaN
1 NaN NaN NaN NaN NaN NaN NaN
2 NaN NaN NaN NaN NaN NaN NaN
3 NaN NaN NaN NaN NaN NaN NaN
4 NaN NaN NaN NaN NaN NaN NaN
I would understand if this happens for an unequal number of columns, but this is not the case. I also tried
df_3 =df_1.append(df_02,ignore_index = True)
which led to the same result...what could I do? I have been looking around but I dont seem to find the right answer. Many thanks!
Upvotes: 1
Views: 92
Reputation: 34046
You can do this:
## rename column names in both dataframes to match each other
In [1412]: df_1.columns = range(df_1.shape[1])
In [1407]: df_2.columns = range(df_2.shape[1])
## now append
In [1414]: df_3 = df_1.append(df_2)
In [1415]: df_3
Out[1415]:
0 1 2 3 4 5
first_point 458.69 457.71 420.82 482.50 501.89 405.89
max_point 3654.07 8134.25 7520.39 6913.17 7564.12 5883.32
0 458.69 457.71 420.82 482.50 501.89 405.89
1 437.92 339.23 287.35 462.16 405.46 387.76
2 443.19 303.66 314.83 461.07 349.54 399.97
3 416.03 315.33 317.84 456.53 390.97 374.84
4 406.89 306.29 328.26 457.55 456.30 398.38
Upvotes: 1