Reputation: 409
I have a data frame that looks like this:
Country Year acnt_class wages
3 AZE 2010 NA NA
4 AZE 2011 0.4206776 NA
5 AZE 2012 NA NA
6 AZE 2013 NA NA
7 AZE 2014 0.7735889 0.4273174
8 AZE 2015 NA NA
9 AZE 2016 NA NA
10 AZE 2017 0.5108674 0.4335978
11 AZE 2018 NA NA
15 BDI 2010 NA NA
16 BDI 2011 0.3140646 NA
17 BDI 2012 NA NA
18 BDI 2013 NA NA
19 BDI 2014 0.1224175 NA
20 BDI 2015 NA NA
21 BDI 2016 NA NA
22 BDI 2017 NA NA
23 BDI 2018 NA NA
27 BEL 2010 NA NA
28 BEL 2011 0.9576057 NA
29 BEL 2012 NA NA
30 BEL 2013 NA NA
31 BEL 2014 1.0083120 0.9623492
32 BEL 2015 NA NA
33 BEL 2016 NA NA
34 BEL 2017 1.0036910 0.9499486
35 BEL 2018 NA NA
I'm trying to run this function to use stine interpolation to fill in missing NAs by group across both variable columns "acnt_class" and "wages":
DF <- DF %>%
group_by(Country) %>%
mutate_at(.vars = c("acnt_class", "wages"),
.funs = ~na_interpolation(., option = "stine"))
It works whenever I run it on columns where there are at least two observations for each group, however, here, I run into this error:
Error in na_interpolation(., option = "stine") :
Input data needs at least 2 non-NA data point for applying na_interpolation
Due to the group "BDI" having full NAs for the variable "wages".
Ideally, I'm looking for a modified function that will "skip" group/variable pairs with full NAs/1 observation and leave them as they were. Solutions? Thanks!
Upvotes: 2
Views: 348
Reputation: 2020
The answer provided by TiberiusGracchus2020 works well. In case it is helpful to anyone, I have turned that code snippet into a function with a lot of comments to make it clearer what's happening at each stage.
# Modify imputeTS::na_interpolate function
# (1) doesn't break on all NA vectors
# (2) won't impute leading and lagging NAs
na_interpolation2 <- function(x, option = "linear") {
library(TSimpute)
library(dplyr)
total_not_missing <- sum(!is.na(x))
# check there is sufficient data for na_interpolation
if(total_not_missing < 2) {x}
else
# replace takes an input vector, a T/F vector & replacement value
{replace(
# input vector is interpolated data
# this will impute leading/lagging NAs which we don't want
imputeTS::na_interpolation(x, option = option),
# create T/F vector for NAs,
is.na(na.approx(x, na.rm = FALSE)),
# replace TRUE with NA in input vector
NA)
}
}
# example data
data1 <- c(NA, NA, NA, NA, NA)
data2 <- c(NA, NA, 1, NA, 3, NA)
na_interpolation(data1)
# Error in na_interpolation(data1) : Input data needs at
# least 2 non-NA data point for applying na_interpolation
na_interpolation(data2)
# [1] 1 1 1 2 3 3
na_interpolation2(data1)
# [1] NA NA NA NA NA
na_interpolation2(data2)
# [1] NA NA 1 2 3 NA
Upvotes: 2
Reputation: 409
Found a solution:
for only interpolation:
library(TSimpute)
library(dplyr)
library(zoo)
DF <- DF %>%
group_by(Country) %>%
mutate_at(vars(acnt_class, wages), funs(if(sum(!is.na(.))<2) {.} else{replace(na_interpolation(., option = "stine"), is.na(na.approx(., na.rm=FALSE)), NA)}))
Upvotes: 2