sriram anush
sriram anush

Reputation: 115

Name error of "activation" while creating a MLP using dense layers

NameError                                 Traceback (most recent call last)
<ipython-input-28-3f33c21e54b4> in <module>()
      1 num_of_features=x_train.shape[1]
      2 model=Sequential()
----> 3 model.add(Dense(20, activation=="relu",kernel_initializer='he_normal',input_shape=(num_of_features,)))
      4 model.add(Dense(10, activation=="relu",kernel_initializer="he_normal"))
      5 model.add(Dense(5, activation="relu",kernel_initializer="he_normal"))

NameError: name 'activation' is not defined

Here goes my code i imported Dense and tensorflow I don't understand why I got above error

import tensorflow as tf
from pandas import read_csv
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from tensorflow.keras.layers import Dense
from tensorflow.keras import Sequential

num_of_features=x_train.shape[1]
model=Sequential()
model.add(Dense(20, activation=="relu",kernel_initializer='he_normal',input_shape=(num_of_features,)))
model.add(Dense(10, activation=="relu",kernel_initializer="he_normal"))
model.add(Dense(5, activation="relu",kernel_initializer="he_normal"))
model.add(Dense(1, activation="sigmoid"))

Upvotes: 0

Views: 3581

Answers (1)

learner
learner

Reputation: 3472

You need to put only one = in the parameters for the Dense layer. Change your code to

import tensorflow as tf
from pandas import read_csv
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from tensorflow.keras.layers import Dense
from tensorflow.keras import Sequential
num_of_features=x_train.shape[1]
model=Sequential()
model.add(Dense(20, activation="relu",kernel_initializer='he_normal',input_shape=(num_of_features,)))
model.add(Dense(10, activation="relu",kernel_initializer="he_normal"))
model.add(Dense(5, activation="relu",kernel_initializer="he_normal"))
model.add(Dense(1, activation="sigmoid"))

Upvotes: 1

Related Questions