Mehul Gupta
Mehul Gupta

Reputation: 1939

Using WordNetLemmatizer.lemmatize() with pos_tags throws KeyError

I just read that lemmatization results are best when assisted with pos_tags. Hence I followed the below code but getting KeyError for calculated POS_tags. Below is the code

   from nltk import pos_tag
   x['Phrase']=x['Phrase'].transform(lambda value:value.lower())
   x['Phrase']=x['Phrase'].transform(lambda value:pos_tag(value))

Output after 3rd line (after calculating POS Tags) enter image description here

   from nltk.stem import WordNetLemmatizer 
   lemmatizer = WordNetLemmatizer()
   x['Phrase_lemma']=x['Phrase'].transform(lambda value: ' '.join([lemmatizer.lemmatize(a[0],pos=a[1]) for a in  value]))

Error:

 KeyError                                  Traceback (most recent call last)
  <ipython-input-8-c2400a79a016> in <module>
  1 from nltk.stem import WordNetLemmatizer
  2 lemmatizer = WordNetLemmatizer()
  ----> 3 x['Phrase_lemma']=x['Phrase'].transform(lambda value: ' '.join([lemmatizer.lemmatize(a[0],pos=a[1]) for a in  value]))

 KeyError: 'DT'

Upvotes: 2

Views: 3487

Answers (1)

Panagiotis Simakis
Panagiotis Simakis

Reputation: 1257

You get a KeyError because wordnet is not using the same pos labels. The accepted pos labels for wordnet based on source code are these: adj, adv, adv and verb.

EDIT based on @bivouac0 's comment:

So to bypass this issue you have to make a mapper. Mapping function is heavily based on this answer. Non-supported POS will not be lemmatized.

import nltk
import pandas as pd
from nltk.corpus import wordnet
from nltk.stem import WordNetLemmatizer 

lemmatizer = WordNetLemmatizer()

def get_wordnet_pos(treebank_tag):
    if treebank_tag.startswith('J'):
        return wordnet.ADJ
    elif treebank_tag.startswith('V'):
        return wordnet.VERB
    elif treebank_tag.startswith('N'):
        return wordnet.NOUN
    elif treebank_tag.startswith('R'):
        return wordnet.ADV
    else:
        return None

x = pd.DataFrame(data=[['this is a sample of text.'], ['one more text.']], 
                 columns=['Phrase'])

x['Phrase'] = x['Phrase'].apply(lambda v: nltk.pos_tag(nltk.word_tokenize(v)))


x['Phrase_lemma'] = x['Phrase'].transform(lambda value: ' '.join([lemmatizer.lemmatize(a[0],pos=get_wordnet_pos(a[1])) if get_wordnet_pos(a[1]) else a[0] for a in  value]))

Upvotes: 3

Related Questions