Reputation: 1939
I just read that lemmatization results are best when assisted with pos_tags. Hence I followed the below code but getting KeyError for calculated POS_tags. Below is the code
from nltk import pos_tag
x['Phrase']=x['Phrase'].transform(lambda value:value.lower())
x['Phrase']=x['Phrase'].transform(lambda value:pos_tag(value))
Output after 3rd line (after calculating POS Tags)
from nltk.stem import WordNetLemmatizer
lemmatizer = WordNetLemmatizer()
x['Phrase_lemma']=x['Phrase'].transform(lambda value: ' '.join([lemmatizer.lemmatize(a[0],pos=a[1]) for a in value]))
Error:
KeyError Traceback (most recent call last)
<ipython-input-8-c2400a79a016> in <module>
1 from nltk.stem import WordNetLemmatizer
2 lemmatizer = WordNetLemmatizer()
----> 3 x['Phrase_lemma']=x['Phrase'].transform(lambda value: ' '.join([lemmatizer.lemmatize(a[0],pos=a[1]) for a in value]))
KeyError: 'DT'
Upvotes: 2
Views: 3487
Reputation: 1257
You get a KeyError
because wordnet
is not using the same pos
labels. The accepted pos
labels for wordnet
based on source code are these: adj
, adv
, adv
and verb
.
EDIT based on @bivouac0 's comment:
So to bypass this issue you have to make a mapper. Mapping function is heavily based on this answer. Non-supported POS will not be lemmatized.
import nltk
import pandas as pd
from nltk.corpus import wordnet
from nltk.stem import WordNetLemmatizer
lemmatizer = WordNetLemmatizer()
def get_wordnet_pos(treebank_tag):
if treebank_tag.startswith('J'):
return wordnet.ADJ
elif treebank_tag.startswith('V'):
return wordnet.VERB
elif treebank_tag.startswith('N'):
return wordnet.NOUN
elif treebank_tag.startswith('R'):
return wordnet.ADV
else:
return None
x = pd.DataFrame(data=[['this is a sample of text.'], ['one more text.']],
columns=['Phrase'])
x['Phrase'] = x['Phrase'].apply(lambda v: nltk.pos_tag(nltk.word_tokenize(v)))
x['Phrase_lemma'] = x['Phrase'].transform(lambda value: ' '.join([lemmatizer.lemmatize(a[0],pos=get_wordnet_pos(a[1])) if get_wordnet_pos(a[1]) else a[0] for a in value]))
Upvotes: 3