Reputation: 39
How do you filter the coefficients summary?
model = lm(x ~ a + b + c + d + e, data=ds)
ss <- coef(summary(model3))
df.coef <- as.data.frame( coef(summary(model)) )
filter(df.coef, Pr(>|t|) < 0.05)
Error: unexpected '>' in "filter(df.coef, Pr(>" `
Upvotes: 1
Views: 597
Reputation: 173813
To use filter
you need to convert the table to a data frame, and wrap the column name in back-ticks:
mod <- lm(y ~ x, data = data.frame(x = 1:10, y = 1:10 + rnorm(10)))
summary(mod)$coefficients %>%
as.data.frame() %>%
filter(`Pr(>|t|)` < 0.05)
#> Estimate Std. Error t value Pr(>|t|)
#> 1 0.9862634 0.07084972 13.9205 6.866089e-07
Upvotes: 1
Reputation: 72828
Your ss
is a matrix, which you may subset like so:
model <- lm(mpg ~ hp + am + gear, mtcars)
ss <- coef(summary(model))
ss[ss[,"Pr(>|t|)"] < .05,]
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) 23.18636779 3.898968754 5.946795 2.111900e-06
# hp -0.05973668 0.007925368 -7.537401 3.283912e-08
# am 3.95611932 1.777326184 2.225883 3.424800e-02
Accordingly after coercing to a dataframe,
df.coef <- as.data.frame(ss)
you would do:
df.coef[df.coef$`Pr(>|t|)` < .05,]
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) 23.18636779 3.898968754 5.946795 2.111900e-06
# hp -0.05973668 0.007925368 -7.537401 3.283912e-08
# am 3.95611932 1.777326184 2.225883 3.424800e-02
Note: gear
is filtered out of the result, since it's p-value is above 0.05.
Upvotes: 3