Reputation: 8198
I want to apply confusionMatrix
to a xtabs
object using pipe operator. I have used the following code
library(tidyverse)
df %>%
xtabs( ~ Observed + Forecasted + Station, data =.) %>%
caret::confusionMatrix(.)
This gives me following error
Error in confusionMatrix.table(.) : the table must have two dimensions
I could able to apply it for individual stations like
df %>% subset(Station == "Aizawl") %>%
xtabs( ~ Observed + Forecasted, data =.) %>%
caret::confusionMatrix(.)
Now how to calculate confusionMatrix
for all the stations at a time?
df = structure(list(Station = c("Aizawl", "Aizawl", "Aizawl", "Aizawl",
"Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl",
"Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl",
"Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl",
"Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl",
"Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl",
"Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl",
"Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl",
"Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl",
"Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl",
"Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl",
"Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl",
"Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl",
"Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl",
"Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl",
"Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl",
"Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl",
"Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl",
"Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl",
"Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl",
"Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl",
"Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl",
"Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl",
"Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl", "Aizawl",
"Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip",
"Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip",
"Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip",
"Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip",
"Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip",
"Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip",
"Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip",
"Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip",
"Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip",
"Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip",
"Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip",
"Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip",
"Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip",
"Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip",
"Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip",
"Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip",
"Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip",
"Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip",
"Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip",
"Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip",
"Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip",
"Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip",
"Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip",
"Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip",
"Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip",
"Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip",
"Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip",
"Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip", "Serchhip"
), Observed = c(1, 1, 1, 5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1,
1, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 3, 3, 4, 1, 1, 4, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1,
4, 4, 4, 3, 4, 1, 1, 1, 1, 1, 3, 5, 5, 5, 3, 1, 1, 3, 1, 1, 1,
1, 1, 5, 3, 4, 1, 1, 1, 1, 1, 3, 1, 4, 1, 1, 1, 1, 1, 4, 4, 5,
1, 5, 4, 5, 5, 5, 5, 1, 5, 1, 4, 5, 4, 4, 5, 4, 5, 5, 3, 1, 5,
3, 4, 3, 4, 5, 5, 5, 5, 4, 4, 5, 4, 4, 5, 5, 5, 5, 4, 5, 5, 5,
5, 5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 3, 5, 5, 1, 1, 3, 4, 1, 1, 1, 1, 1, 1, 1, 1,
3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 3,
3, 3, 1, 1, 1, 1, 1, 1, 1, 4, 4, 1, 3, 4, 1, 1, 1, 1, 1, 1, 1,
1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 3,
6, 5, 5, 4, 1, 5, 1, 1, 1, 1, 4, 5, 5, 5, 5, 5, 5, 1, 1, 4, 1,
4, 4, 4, 5, 1, 1, 4, 3, 5, 4, 5, 5, 5, 5, 5, 4, 4, 4, 4, 5, 1,
6, 5, 5), Forecasted = c(1, 1, 1, 5, 5, 1, 1, 1, 5, 5, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 5, 5, 5, 5, 1, 1, 1, 1, 1,
1, 1, 1, 1, 5, 5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 4, 4, 1, 1, 5, 3, 1,
1, 1, 4, 5, 5, 5, 5, 1, 1, 1, 5, 5, 1, 5, 5, 5, 4, 5, 4, 4, 4,
3, 4, 4, 1, 1, 5, 5, 4, 4, 4, 1, 1, 1, 4, 4, 4, 4, 4, 4, 1, 1,
5, 4, 4, 5, 4, 4, 4, 4, 5, 4, 5, 5, 5, 5, 5, 4, 5, 5, 4, 1, 1,
4, 4, 5, 5, 5, 5, 1, 4, 5, 5, 1, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 1, 1, 1, 5, 4, 1, 1, 1, 5, 4, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 5, 5, 5, 6, 5, 5, 1, 1, 1, 1, 1, 1, 1,
1, 1, 5, 5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 5, 5, 4, 1, 1, 1, 1, 1, 4, 1, 1, 1, 4, 4, 4, 4, 1, 4, 1, 3,
1, 1, 1, 4, 4, 4, 4, 4, 4, 1, 1, 1, 4, 4, 3, 5, 5, 5, 4, 3, 5,
5, 5, 5, 5, 4, 5, 5, 5, 4, 5, 4, 4, 5, 5, 4, 4, 5, 4, 1, 4, 4,
5, 5, 4, 5, 4, 5, 4, 5, 5, 5, 1, 4, 5, 5, 5, 4, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 6)), row.names = c(NA, 333L), class = "data.frame")
Upvotes: 0
Views: 164
Reputation: 46958
If you do it on the whole data.frame, you get a array of tables separated by stations, hence confusionMatrix() complains:
xtabs( ~ Observed + Forecasted + Station, data =df)
, , Station = Aizawl
Forecasted
Observed 1 3 4 5 6
1 56 2 13 13 0
3 12 0 4 8 0
4 4 0 9 11 0
5 3 0 7 23 0
6 0 0 0 0 0
, , Station = Serchhip
Forecasted
Observed 1 3 4 5 6
1 76 3 18 18 0
3 4 0 2 5 0
4 2 0 4 12 0
5 1 0 9 10 2
6 0 0 0 2 0
So you can try using array_tree()
with margin = 3
to convert it into a list, with which you can use map() to apply the confusion matrix:
df %>%
xtabs( ~ Observed + Forecasted + Station, data =.) %>%
array_tree(.,margin=3) %>%
map(~caret::confusionMatrix(as.table(.x)))
Upvotes: 1