Reputation:
I have an equation: y=ax^3 + bx^2 + cx + d
and the list of values x = 1, 2, 3, 4
when y = 3, 4, 3, -6
respectively. In Octave, I want to:
(a) Set up a system of four equations involving a, b, c and d. For example, substituting (x, y) = (1,3) into the polynomial gives the equation 3 = a + b + c + d.
(b) Solve the system in (a).
I've been trying to find how to do this for three hours and found nothing. Any help would be appreciated
Thanks.
pstscrpt - I have to do everything in Octave, even though I could find it by hand
Upvotes: 2
Views: 84
Reputation: 8486
Written without any ;
at end of assignements so you can see what is going on.
You problem is basically a linear system in the variables [a,b,c,d]'=z
So you need to build a system A*z=y, where A is a matrix 4x4, y and z are column vector size 4
x=[1,2,3,4]'
y=[3,4,3,-6]'
A=zeros(4,4)
for i=1:4
A(i,:)= [ x(i)^3, x(i)^2, x(i), 1]
endfor
z=A\y
the outcome will be
z =
-1.00000
5.00000
-7.00000
6.00000
Upvotes: 1
Reputation: 26069
In Matlab: start by just substituting the different values of x
and y
you wrote in the expression a*x^3 + b*x^2 + c*x + d = y
as:
syms a b c d
eqn1 = a*1^3 + b*1^2 + c*1^1 +d == 3 ;
eqn2 = a*2^3 + b*2^2 + c*2^1 +d == 4 ;
eqn3 = a*3^3 + b*3^2 + c*3^1 +d == 3 ;
eqn4 = a*4^3 + b*4^2 + c*4^1 +d == -6 ;
Then Use equationsToMatrix
to convert the equations into the form AX = B
. The second input to equationsToMatrix
specifies the independent variables in the equations.:
[A,B] = equationsToMatrix([eqn1, eqn2, eqn3, eqn4], [a, b, c,d ])
and the solution for a,b,c,d is:
X = linsolve(A,B)
you can also use if you want
sol = solve([eqn1, eqn2, eqn3, eqn4], [a, b, c,d ])
Upvotes: 1