Reputation: 514
I need to replace NaN with values from the previous row except for the first row where NaN values are replaced with zero. What would be the most efficient solution?
Sample input, output -
In [179]: arr
Out[179]:
array([[ 5., nan, nan, 7., 2., 6., 5.],
[ 3., nan, 1., 8., nan, 5., nan],
[ 4., 9., 6., nan, nan, nan, 7.]])
In [180]: out
Out[180]:
array([[ 5., 0, 0., 7., 2., 6., 5.],
[ 3., 0, 1., 8., 2., 5., 5.],
[ 4., 9., 6., 8., 2., 6., 7.]])
Upvotes: 1
Views: 3850
Reputation: 26886
(EDIT to include a (partially?) vectorized approach)
(EDIT2 to include some timings)
The simplest solution matching your required input/output is by looping through the rows:
import numpy as np
def ffill_loop(arr, fill=0):
mask = np.isnan(arr[0])
arr[0][mask] = fill
for i in range(1, len(arr)):
mask = np.isnan(arr[i])
arr[i][mask] = arr[i - 1][mask]
return arr
print(ffill_loop(arr.copy()))
# [[5. 0. 0. 7. 2. 6. 5.]
# [3. 0. 1. 8. 2. 5. 5.]
# [4. 9. 6. 8. 2. 5. 7.]]
You could also use a vectorized approach which may come faster for larger inputs (the fewer the nan
below each other, the better):
import numpy as np
def ffill_roll(arr, fill=0, axis=0):
mask = np.isnan(arr)
replaces = np.roll(arr, 1, axis)
slicing = tuple(0 if i == axis else slice(None) for i in range(arr.ndim))
replaces[slicing] = fill
while np.count_nonzero(mask) > 0:
arr[mask] = replaces[mask]
mask = np.isnan(arr)
replaces = np.roll(replaces, 1, axis)
return arr
print(ffill_roll(arr.copy()))
# [[5. 0. 0. 7. 2. 6. 5.]
# [3. 0. 1. 8. 2. 5. 5.]
# [4. 9. 6. 8. 2. 5. 7.]]
Timing these function one would get (including the loop-less solution proposed in @Divakar's answer):
import numpy as np
from numpy import nan
funcs = ffill_loop, ffill_roll, ffill_cols
sep = ' ' * 4
print(f'{"shape":15s}', end=sep)
for func in funcs:
print(f'{func.__name__:>15s}', end=sep)
print()
for n in (1, 5, 10, 50, 100, 500, 1000, 2000):
k = l = n
arr = np.array([[ 5., nan, nan, 7., 2., 6., 5.] * k,
[ 3., nan, 1., 8., nan, 5., nan] * k,
[ 4., 9., 6., nan, nan, nan, 7.] * k] * l)
print(f'{arr.shape!s:15s}', end=sep)
for func in funcs:
result = %timeit -q -o func(arr.copy())
print(f'{result.best * 1e3:12.3f} ms', end=sep)
print()
shape ffill_loop ffill_roll ffill_cols
(3, 7) 0.009 ms 0.063 ms 0.026 ms
(15, 35) 0.043 ms 0.074 ms 0.034 ms
(30, 70) 0.092 ms 0.098 ms 0.055 ms
(150, 350) 0.783 ms 0.939 ms 0.786 ms
(300, 700) 2.409 ms 4.060 ms 3.829 ms
(1500, 3500) 49.447 ms 105.379 ms 169.649 ms
(3000, 7000) 169.799 ms 340.548 ms 759.854 ms
(6000, 14000) 656.982 ms 1369.651 ms 1610.094 ms
Indicating that ffill_loop()
is actually the fastest for the given inputs most of the times. Instead ffill_cols()
gets progressively to be the slowest approach as the input size increases.
Upvotes: 4
Reputation: 221534
Here's a vectorized NumPy based one inspired by Most efficient way to forward-fill NaN values in numpy array's answer post
-
def ffill_cols(a, startfillval=0):
mask = np.isnan(a)
tmp = a[0].copy()
a[0][mask[0]] = startfillval
mask[0] = False
idx = np.where(~mask,np.arange(mask.shape[0])[:,None],0)
out = np.take_along_axis(a,np.maximum.accumulate(idx,axis=0),axis=0)
a[0] = tmp
return out
Sample run -
In [2]: a
Out[2]:
array([[ 5., nan, nan, 7., 2., 6., 5.],
[ 3., nan, 1., 8., nan, 5., nan],
[ 4., 9., 6., nan, nan, nan, 7.]])
In [3]: ffill_cols(a)
Out[3]:
array([[5., 0., 0., 7., 2., 6., 5.],
[3., 0., 1., 8., 2., 5., 5.],
[4., 9., 6., 8., 2., 5., 7.]])
Upvotes: 3
Reputation: 699
How about this?
import numpy as np
x = np.array([[ 5., np.nan, np.nan, 7., 2., 6., 5.],
[ 3., np.nan, 1., 8., np.nan, 5., np.nan],
[ 4., 9., 6., np.nan, np.nan, np.nan, 7.]])
def fillnans(a):
a[0, np.isnan(a[0,:])] = 0
while np.any(np.isnan(a)):
a[np.isnan(a)] = np.roll(a, 1, 0)[np.isnan(a)]
return a
print(x)
print(fillnans(x))
[[ 5. nan nan 7. 2. 6. 5.]
[ 3. nan 1. 8. nan 5. nan]
[ 4. 9. 6. nan nan nan 7.]]
[[5. 0. 0. 7. 2. 6. 5.]
[3. 0. 1. 8. 2. 5. 5.]
[4. 9. 6. 8. 2. 5. 7.]]
I hope this helps!
Upvotes: 0
Reputation: 1
from numpy import *
a = array([[5., nan, nan, 7., 2., 6., 5.],
[3., nan, 1., 8., nan, 5., nan],
[4., 9., 6., nan, nan, nan, 7.]])
replace nan with zeros in first row
where_are_NaNs = isnan(a[0])
a[0][where_are_NaNs] = 0
replace nan in other rows
where_are_NaNs = isnan(a)
for i in range(len(where_are_NaNs)):
for j in range(len(where_are_NaNs[0])):
if(where_are_NaNs[i][j]):
a[i][j] = a[i-1][j]
Upvotes: 0
Reputation: 185
import numpy as np
arr = np.array([[ 5., np.nan, np.nan, 7., 2., 6., 5.],
[ 3., np.nan, 1., 8., np.nan, 5., np.nan],
[ 4., 9., 6., np.nan, np.nan, np.nan, 7.]])
nan_indices = np.isnan(arr)
Where nan_indices gives you:
array([[False, True, True, False, False, False, False],
[False, True, False, False, True, False, True],
[False, False, False, True, True, True, False]])
Now it's just a matter of replacing the values using the logic you mentioned in the question:
arr[0, nan_indices[0, :]] = 0
for row in range(1, np.shape(arr)[0]):
arr[row, nan_indices[row, :]] = arr[row - 1, nan_indices[row, :]]
Now arr is:
array([[5., 0., 0., 7., 2., 6., 5.],
[3., 0., 1., 8., 2., 5., 5.],
[4., 9., 6., 8., 2., 5., 7.]])
Upvotes: 1