deschen
deschen

Reputation: 10996

tidyverse summarize multiple columns but show result as rows

I have data where I want to get a bunch of summary statistics for multiple columns with the tidyverse approach. However, utilizing tidyverse's summarize function, it will create each column statistic as a new column, whereas I would prefer to see the column names as rows and each statistic as a new column. So my question is:

Is there a more elegant (and I know "elegant" is a vague term) way to achieve this than by accompanying the summarize function with a pivot_longer and pivot_wider?

I'm using the latest dev versions of the tidyverse package, i.e. dplyr 0.8.99.9003 and tidyr 1.1.0. So it's fine if any solution requires new functions from these packages that are not yet on CRAN.

library(tidyverse)

dat <- as.data.frame(matrix(1:100, ncol = 5))

dat %>%
  summarize(across(everything(), list(mean = mean,
                                      sum  = sum))) %>%
  pivot_longer(cols      = everything(),
               names_sep = "_",
               names_to  = c("variable", "statistic")) %>%
  pivot_wider(names_from = "statistic")

Expected outcome:

# A tibble: 5 x 3
  variable  mean   sum
  <chr>    <dbl> <dbl>
1 V1        10.5   210
2 V2        30.5   610
3 V3        50.5  1010
4 V4        70.5  1410
5 V5        90.5  1810

Note: I'm not set on the name of any of the columns, so if there's a nice way to get the structure of the table with different/generic names, that'd also be fine.

Upvotes: 6

Views: 3190

Answers (3)

Darren Tsai
Darren Tsai

Reputation: 35554

You can first stack all columns together and summarise by group.

dat %>%
  pivot_longer(everything()) %>%
  group_by(name) %>% 
  summarise_at("value", list(~mean(.), ~sum(.)))

# # A tibble: 5 x 3
#   name   mean   sum
#   <chr> <dbl> <int>
# 1 V1     10.5   210
# 2 V2     30.5   610
# 3 V3     50.5  1010
# 4 V4     70.5  1410
# 5 V5     90.5  1810

Upvotes: 2

Ronak Shah
Ronak Shah

Reputation: 388797

You can skip the pivot_wider step by using ".value" in names_to.

library(dplyr)

dat %>%
  summarise_all(list(mean = mean,sum  = sum)) %>%
  tidyr::pivot_longer(cols = everything(),
               names_sep = "_",
               names_to  = c("variable", ".value"))


# A tibble: 5 x 3
#  variable  mean   sum
#  <chr>    <dbl> <int>
#1 V1        10.5   210
#2 V2        30.5   610
#3 V3        50.5  1010
#4 V4        70.5  1410
#5 V5        90.5  1810

Upvotes: 5

Wimpel
Wimpel

Reputation: 27732

not a tidyverse solution, but a data.table one instead.. also, not sure if it is more 'elegant' ;-)

but here you go...

library( data.table )
#make 'dat' a data.table
setDT(dat)
#transpose, keeping column names
dat <- transpose(dat, keep.names = "var_name" )
#melt to long and summarise
melt(dat, id.vars = "var_name")[, .(mean = mean(value), sum = sum(value) ), by = var_name]


#    var_name mean  sum
# 1:       V1 10.5  210
# 2:       V2 30.5  610
# 3:       V3 50.5 1010
# 4:       V4 70.5 1410
# 5:       V5 90.5 1810

Upvotes: 4

Related Questions