Reputation: 662
Is there a way to simplify this code using a loop?
set.seed(100)
AL_INDEX <- sample(1:nrow(AL_DF), 0.7*nrow(AL_DF))
AL_TRAIN <- AL_DF[AL_INDEX,]
AL_TEST <- AL_DF[-AL_INDEX,]
AR_INDEX <- sample(1:nrow(AR_DF), 0.7*nrow(AR_DF))
AR_TRAIN <- AR_DF[AR_INDEX,]
AR_TEST <- AR_DF[-AR_INDEX,]
AZ_INDEX <- sample(1:nrow(AZ_DF), 0.7*nrow(AZ_DF))
AZ_TRAIN <- AZ_DF[AZ_INDEX,]
AZ_TEST <- AZ_DF[-AZ_INDEX,]
AL_DF, AR_DF & AZ_DF are data frames that have the same field structure, but different number of records.
Upvotes: 0
Views: 44
Reputation: 389175
Find a pattern to capture all the dataframe names. In the example shared all of them end with "_DF"
, use mget
to get them in list. Divide the data in test and train and unlist
them one level.
data <- unlist(lapply(mget(ls(pattern = '_DF$')), function(df) {
index <- sample(1:nrow(df), 0.7*nrow(df))
list(train = df[index,], test = df[-index,])
}), recursive = FALSE)
Now get them into individual dataframes using list2env
.
list2env(data, .GlobalEnv)
Upvotes: 2