Reputation: 690
I am trying to test my exported Mobilenet v2 SSDLite
model(https://drive.google.com/open?id=1htyBE6R62yVCV8v-9muEJ_lGmoPxQMmJ) with video. Then i found an answer here, i modify somewhere to adapt my model :
import cv2
from PIL import Image
import numpy as np
import tensorflow as tf
def read_tensor_from_readed_frame(frame, input_height=300, input_width=300,
input_mean=128, input_std=128):
output_name = "normalized"
# float_caster = tf.cast(frame, tf.float32)
float_caster = tf.cast(frame, tf.uint8)
dims_expander = tf.expand_dims(float_caster, 0);
resized = tf.image.resize_bilinear(dims_expander, [input_height, input_width])
normalized = tf.divide(tf.subtract(resized, [input_mean]), [input_std])
sess = tf.Session()
result = sess.run(normalized)
return result
def load_labels(label_file):
label = []
proto_as_ascii_lines = tf.gfile.GFile(label_file).readlines()
for l in proto_as_ascii_lines:
label.append(l.rstrip())
return label
def VideoSrcInit(paath):
cap = cv2.VideoCapture(paath)
flag, image = cap.read()
if flag:
print("Valid Video Path. Lets move to detection!")
else:
raise ValueError("Video Initialization Failed. Please make sure video path is valid.")
return cap
def main():
Labels_Path = "C:/MachineLearning/CV/coco-labelmap.txt"
Model_Path = "C:/MachineLearning/CV/previous_float_model_converted_from_ssd_mobilenet_v2_quantized_300x300_coco_2019_01_03.tflite"
input_path = "C:/MachineLearning/CV/Object_Tracking/video2.mp4"
##Loading labels
labels = load_labels(Labels_Path)
##Load tflite model and allocate tensors
interpreter = tf.lite.Interpreter(model_path=Model_Path)
interpreter.allocate_tensors()
# Get input and output tensors.
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
input_shape = input_details[0]['shape']
##Read video
cap = VideoSrcInit(input_path)
while True:
ok, cv_image = cap.read()
if not ok:
break
##Converting the readed frame to RGB as opencv reads frame in BGR
image = Image.fromarray(cv_image).convert('RGB')
##Converting image into tensor
image_tensor = read_tensor_from_readed_frame(image ,300, 300)
##Test model
interpreter.set_tensor(input_details[0]['index'], image_tensor)
interpreter.invoke()
output_data = interpreter.get_tensor(output_details[0]['index'])
## You need to check the output of the output_data variable and
## map it on the frame in order to draw the bounding boxes.
cv2.namedWindow("cv_image", cv2.WINDOW_NORMAL)
cv2.imshow("cv_image",cv_image)
##Use p to pause the video and use q to termiate the program
key = cv2.waitKey(10) & 0xFF
if key == ord("q"):
break
elif key == ord("p"):
cv2.waitKey(0)
continue
cap.release()
if __name__ == '__main__':
main()
When i run this scrpit on my tflite modle, the FPS is very very slow almost still, so what is wrong with the script ?
Upvotes: 2
Views: 2771
Reputation: 690
I solve it myself,this is the sript:
import numpy as np
import tensorflow as tf
import cv2
import time
print(tf.__version__)
Model_Path = "C:/MachineLearning/CV/uint8_dequantized_model_converted_from_exported_model.tflite"
Video_path = "C:/MachineLearning/CV/Object_Tracking/video2.mp4"
interpreter = tf.lite.Interpreter(model_path=Model_Path)
interpreter.allocate_tensors()
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
class_names = ['person', 'bicycle', 'car', 'motorcycle', 'airplane','bus', 'train', 'truck', 'boat', 'traffic light',
'fire hydrant ', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear',
'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball',
'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass', ' cup',
'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza',
'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote',
'keyboard', ' cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors',
'teddy bear', 'hair drier', 'toothbrush']
cap = cv2.VideoCapture(Video_path)
ok, frame_image = cap.read()
original_image_height, original_image_width, _ = frame_image.shape
thickness = original_image_height // 500
fontsize = original_image_height / 1500
print(thickness)
print(fontsize)
while True:
ok, frame_image = cap.read()
if not ok:
break
model_interpreter_start_time = time.time()
resize_img = cv2.resize(frame_image, (300, 300), interpolation=cv2.INTER_CUBIC)
reshape_image = resize_img.reshape(300, 300, 3)
image_np_expanded = np.expand_dims(reshape_image, axis=0)
image_np_expanded = image_np_expanded.astype('uint8') # float32
interpreter.set_tensor(input_details[0]['index'], image_np_expanded)
interpreter.invoke()
output_data = interpreter.get_tensor(output_details[0]['index'])
output_data_1 = interpreter.get_tensor(output_details[1]['index'])
output_data_2 = interpreter.get_tensor(output_details[2]['index'])
output_data_3 = interpreter.get_tensor(output_details[3]['index'])
each_interpreter_time = time.time() - model_interpreter_start_time
for i in range(len(output_data_1[0])):
confidence_threshold = output_data_2[0][i]
if confidence_threshold > 0.3:
label = "{}: {:.2f}% ".format(class_names[int(output_data_1[0][i])], output_data_2[0][i] * 100)
label2 = "inference time : {:.3f}s" .format(each_interpreter_time)
left_up_corner = (int(output_data[0][i][1]*original_image_width), int(output_data[0][i][0]*original_image_height))
left_up_corner_higher = (int(output_data[0][i][1]*original_image_width), int(output_data[0][i][0]*original_image_height)-20)
right_down_corner = (int(output_data[0][i][3]*original_image_width), int(output_data[0][i][2]*original_image_height))
cv2.rectangle(frame_image, left_up_corner_higher, right_down_corner, (0, 255, 0), thickness)
cv2.putText(frame_image, label, left_up_corner_higher, cv2.FONT_HERSHEY_DUPLEX, fontsize, (255, 255, 255), thickness=thickness)
cv2.putText(frame_image, label2, (30, 30), cv2.FONT_HERSHEY_DUPLEX, fontsize, (255, 255, 255), thickness=thickness)
cv2.namedWindow('detect_result', cv2.WINDOW_NORMAL)
# cv2.resizeWindow('detect_result', 800, 600)
cv2.imshow("detect_result", frame_image)
key = cv2.waitKey(10) & 0xFF
if key == ord("q"):
break
elif key == 32:
cv2.waitKey(0)
continue
cap.release()
cv2.destroyAllWindows()
but the inference spped is still slow, because tflite's operations are optimized for mobile devide, not for Desktop.
Upvotes: 1