Reputation: 1120
I can apply PCA on the classic Iris dataset to obtain the cumulative proportion per dimension:
library(tidyverse)
x <- iris[,1:4] %>% as.matrix()
pca <- prcomp(x)
summary(pca)
But I don't know how can I do that with tidymodels. My code so far is:
library(tidymodels)
iris_vars <- iris %>% select(-Species)
iris_rec <- recipe(~., iris_vars) %>%
step_pca(all_predictors())
iris_prep <- prep(iris_rec)
iris_tidy <- tidy(iris_prep,1)
iris_tidy
summary(iris_tidy)
I would like to obtain this with tidymodels:
Importance of components:
PC1 PC2 PC3 PC4
Standard deviation 2.0563 0.49262 0.2797 0.15439
Proportion of Variance 0.9246 0.05307 0.0171 0.00521
Cumulative Proportion 0.9246 0.97769 0.9948 1.00000
Any help will be greatly appreciated.
Upvotes: 3
Views: 577
Reputation: 3494
You can get the same results, if you use the same model. prcomp()
defaults to center = TRUE
, whereas step_pca()
defaults to center = FALSE
. In the following, I use centering and scaling for both (since this is often recommended).
library("tidymodels")
x <- iris[,1:4] %>% as.matrix()
pca <- prcomp(x, scale. = TRUE)
summary(pca)
#> Importance of components:
#> PC1 PC2 PC3 PC4
#> Standard deviation 1.7084 0.9560 0.38309 0.14393
#> Proportion of Variance 0.7296 0.2285 0.03669 0.00518
#> Cumulative Proportion 0.7296 0.9581 0.99482 1.00000
iris_rec <- recipe(Species ~ ., iris) %>%
step_normalize(all_predictors()) %>%
step_pca(all_predictors())
iris_prep <- prep(iris_rec)
summary(iris_prep$steps[[2]]$res)
#> Importance of components:
#> PC1 PC2 PC3 PC4
#> Standard deviation 1.7084 0.9560 0.38309 0.14393
#> Proportion of Variance 0.7296 0.2285 0.03669 0.00518
#> Cumulative Proportion 0.7296 0.9581 0.99482 1.00000
Created on 2020-05-29 by the reprex package (v0.3.0)
Upvotes: 4