Reputation: 101
I have the following example df:
col1 col2 col3 doc_no
0 a x f 0
1 a x f 1
2 b x g 2
3 b y g 3
4 c x t 3
5 c y t 4
6 a x f 5
7 d x t 5
8 d x t 6
I want to group by the first 3 columns (col1
, col2
, col3
), concatenate the fourth column (doc_no
) into a line of strings based on the groupings of the first 3 columns, as well as also generate a sorted count column of the 3 column grouping (count
). Example desired output below (column order doesn't matter):
col1 col2 col3 count doc_no
0 a x f 3 0, 1, 5
1 d x t 2 5, 6
2 b x g 1 2
3 b y g 1 3
4 c x t 1 3
5 c y t 1 4
How would I go about doing this? I used the below line to get just the grouping and the count:
grouped_df = df.groupby(['col1','col2','col3']).size().reset_index(name='count')\
.sort_values(['count'], ascending=False).reset_index()
But I'm not sure how to also get the concatenated doc_no
column in the same code line.
Upvotes: 7
Views: 2083
Reputation: 26676
Another way
df2=df.groupby(['col1','col2','col3']).doc_no.agg(doc_no=('doc_no',list)).reset_index()
df2['doc_no']=df2['doc_no'].astype(str).str[1:-1]
Upvotes: 1
Reputation: 323316
Let us do
df.doc_no=df.doc_no.astype(str)
s=df.groupby(['col1','col2','col3']).doc_no.agg(['count',','.join]).reset_index()
s
col1 col2 col3 count join
0 a x f 3 0,1,5
1 b x g 1 2
2 b y g 1 3
3 c x t 1 3
4 c y t 1 4
5 d x t 2 5,6
Upvotes: 4
Reputation: 402814
Try groupby
and agg
like so:
(df.groupby(['col1', 'col2', 'col3'])['doc_no']
.agg(['count', ('doc_no', lambda x: ','.join(map(str, x)))])
.sort_values('count', ascending=False)
.reset_index())
col1 col2 col3 count doc_no
0 a x f 3 0,1,5
1 d x t 2 5,6
2 b x g 1 2
3 b y g 1 3
4 c x t 1 3
5 c y t 1 4
agg
is simple to use because you can specify a list of reducers to run on a single column.
Upvotes: 10