Reputation: 479
I'm a total newbie at Python and have what I think is a pretty complex problem. I'd like to parse two tables from a website for about 80 URLs, example of one of the pages: https://www.sports-reference.com/cfb/players/sam-darnold-1.html
I'd need the first table "Passing" and the second table "Rushing and Receiving" from each of the 80 URLs (I know how to get the first and second table). But the problem is I need it for all 80 URLs in one csv.
This is my code so far and how the data looks:
import requests
import pandas as pd
COLUMNS = ['School', 'Conf', 'Class', 'Pos', 'G', 'Cmp', 'Att', 'Pct', 'Yds','Y/A', 'AY/A', 'TD', 'Int', 'Rate']
urls = ['https://www.sports-reference.com/cfb/players/russell-wilson-1.html',
'https://www.sports-reference.com/cfb/players/cam-newton-1.html',
'https://www.sports-reference.com/cfb/players/peyton-manning-1.html']
#scrape elements
dataframes = []
try:
for url in urls:
response = requests.get(url)
soup = BeautifulSoup(response.content, "html.parser")
#print(soup)
table = soup.find_all('table')[0] # Find the first "table" tag in the page
rows = table.find_all("tr")
cy_data = []
for row in rows:
cells = row.find_all("td")
cells = cells[0:14]
cy_data.append([cell.text for cell in cells]) # For each "td" tag, get the text inside it
dataframes.append(pd.DataFrame(cy_data, columns=COLUMNS).drop(0, axis=0))
except:
pass
data = pd.concat(dataframes)
data.to_csv('testcsv3.csv', sep=',') ```
+---+--+----------------------+---------+-------+-----+----+-----+------+------+-------+------+------+-----+-----+-------+
| | | School | Conf | Class | Pos | G | Cmp | Att | Pct | Yds | Y/A | AY/A | TD | Int | Rate |
+---+--+----------------------+---------+-------+-----+----+-----+------+------+-------+------+------+-----+-----+-------+
| 1 | | | | | | | | | | | | | | | |
| 2 | | North Carolina State | ACC | FR | QB | 11 | 150 | 275 | 54.5 | 1955 | 7.1 | 8.2 | 17 | 1 | 133.9 |
| 3 | | North Carolina State | ACC | SO | QB | 12 | 224 | 378 | 59.3 | 3027 | 8 | 8.3 | 31 | 11 | 147.8 |
| 4 | | North Carolina State | ACC | JR | QB | 13 | 308 | 527 | 58.4 | 3563 | 6.8 | 6.6 | 28 | 14 | 127.5 |
| 5 | | Wisconsin | Big Ten | SR | QB | 14 | 225 | 309 | 72.8 | 3175 | 10.3 | 11.8 | 33 | 4 | 191.8 |
| 6 | | Overall | | | | | 907 | 1489 | 60.9 | 11720 | 7.9 | 8.4 | 109 | 30 | 147.2 |
| 7 | | North Carolina State | | | | | 682 | 1180 | 57.8 | 8545 | 7.2 | 7.5 | 76 | 26 | 135.5 |
| 8 | | Wisconsin | | | | | 225 | 309 | 72.8 | 3175 | 10.3 | 11.8 | 33 | 4 | 191.8 |
| 1 | | | | | | | | | | | | | | | |
| 2 | | Florida | SEC | FR | QB | 5 | 5 | 10 | 50 | 40 | 4 | 4 | 0 | 0 | 83.6 |
| 3 | | Florida | SEC | SO | QB | 1 | 1 | 2 | 50 | 14 | 7 | 7 | 0 | 0 | 108.8 |
| 4 | | Auburn | SEC | JR | QB | 14 | 185 | 280 | 66.1 | 2854 | 10.2 | 11.2 | 30 | 7 | 182 |
| 5 | | Overall | | | | | 191 | 292 | 65.4 | 2908 | 10 | 10.9 | 30 | 7 | 178.2 |
| 6 | | Florida | | | | | 6 | 12 | 50 | 54 | 4.5 | 4.5 | 0 | 0 | 87.8 |
| 7 | | Auburn | | | | | 185 | 280 | 66.1 | 2854 | 10.2 | 11.2 | 30 | 7 | 182 |
+---+--+----------------------+---------+-------+-----+----+-----+------+------+-------+------+------+-----+-----+-------+
And this is how I'd like the data to look, note the player name is missing from each grouping which ideally can be added from the sample website/url and I've added the second table which I need help appending:
+---+----------------+----------------------+---------+-------+-----+----+-----+------+------+-------+------+------+-----+-----+-------+----------------------+---------+-------+-----+----+-----+-----+-----+----+
| | | School | Conf | Class | Pos | G | Cmp | Att | Pct | Yds | Y/A | AY/A | TD | Int | Rate | School | Conf | Class | Pos | G | Att | Yds | Avg | TD |
+---+----------------+----------------------+---------+-------+-----+----+-----+------+------+-------+------+------+-----+-----+-------+----------------------+---------+-------+-----+----+-----+-----+-----+----+
| 1 | | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | Russell Wilson | North Carolina State | ACC | FR | QB | 11 | 150 | 275 | 54.5 | 1955 | 7.1 | 8.2 | 17 | 1 | 133.9 | North Carolina State | ACC | FR | QB | 11 | 150 | 467 | 6.7 | 3 |
| 3 | Russell Wilson | North Carolina State | ACC | SO | QB | 12 | 224 | 378 | 59.3 | 3027 | 8 | 8.3 | 31 | 11 | 147.8 | North Carolina State | ACC | SO | QB | 12 | 129 | 300 | 6.8 | 2 |
| 4 | Russell Wilson | North Carolina State | ACC | JR | QB | 13 | 308 | 527 | 58.4 | 3563 | 6.8 | 6.6 | 28 | 14 | 127.5 | North Carolina State | ACC | JR | QB | 13 | 190 | 560 | 7.1 | 5 |
| 5 | Russell Wilson | Wisconsin | Big Ten | SR | QB | 14 | 225 | 309 | 72.8 | 3175 | 10.3 | 11.8 | 33 | 4 | 191.8 | Wisconsin | Big Ten | SR | QB | 14 | 210 | 671 | 7.3 | 7 |
| 6 | Russell Wilson | Overall | | | | | 907 | 1489 | 60.9 | 11720 | 7.9 | 8.4 | 109 | 30 | 147.2 | Overall | | | | | | | | |
| 7 | Russell Wilson | North Carolina State | | | | | 682 | 1180 | 57.8 | 8545 | 7.2 | 7.5 | 76 | 26 | 135.5 | North Carolina State | | | | | | | | |
| 8 | Russell Wilson | Wisconsin | | | | | 225 | 309 | 72.8 | 3175 | 10.3 | 11.8 | 33 | 4 | 191.8 | Wisconsin | | | | | | | | |
| 1 | | | | | | | | | | | | | | | | | | | | | | | | |
| 2 | Cam Newton | Florida | SEC | FR | QB | 5 | 5 | 10 | 50 | 40 | 4 | 4 | 0 | 0 | 83.6 | Florida | SEC | FR | QB | 5 | 210 | 456 | 7.1 | 2 |
| 3 | Cam Newton | Florida | SEC | SO | QB | 1 | 1 | 2 | 50 | 14 | 7 | 7 | 0 | 0 | 108.8 | Florida | SEC | SO | QB | 1 | 212 | 478 | 4.5 | 5 |
| 4 | Cam Newton | Auburn | SEC | JR | QB | 14 | 185 | 280 | 66.1 | 2854 | 10.2 | 11.2 | 30 | 7 | 182 | Auburn | SEC | JR | QB | 14 | 219 | 481 | 6.7 | 6 |
| 5 | Cam Newton | Overall | | | | | 191 | 292 | 65.4 | 2908 | 10 | 10.9 | 30 | 7 | 178.2 | Overall | | | | | | | 3.4 | 7 |
| 6 | Cam Newton | Florida | | | | | 6 | 12 | 50 | 54 | 4.5 | 4.5 | 0 | 0 | 87.8 | Florida | | | | | | | | |
| 7 | Cam Newton | Auburn | | | | | 185 | 280 | 66.1 | 2854 | 10.2 | 11.2 | 30 | 7 | 182 | Auburn | | | | | | | | |
+---+----------------+----------------------+---------+-------+-----+----+-----+------+------+-------+------+------+-----+-----+-------+----------------------+---------+-------+-----+----+-----+-----+-----+----+
So basically I'd wanna append the second table (Only the columns mentioned) to the end of the first table and add the player name (read from the URL) to each row
Upvotes: 0
Views: 437
Reputation: 16683
import requests
import pandas as pd
from bs4 import BeautifulSoup
COLUMNS = ['School', 'Conf', 'Class', 'Pos', 'G', 'Cmp', 'Att', 'Pct', 'Yds','Y/A', 'AY/A', 'TD', 'Int', 'Rate']
COLUMNS2 = ['School', 'Conf', 'Class', 'Pos', 'G', 'Att', 'Yds','Avg', 'TD', 'Rec', 'Yds', 'Avg', 'TD', 'Plays', 'Yds', 'Avg', 'TD']
urls = ['https://www.sports-reference.com/cfb/players/russell-wilson-1.html',
'https://www.sports-reference.com/cfb/players/cam-newton-1.html',
'https://www.sports-reference.com/cfb/players/peyton-manning-1.html']
#scrape elements
dataframes = []
dataframes2 = []
for url in urls:
a = url
print(a)
response = requests.get(url)
soup = BeautifulSoup(response.content, "html.parser")
#print(soup)
table = soup.find_all('table')[0] # Find the first "table" tag in the page
rows = table.find_all("tr")
cy_data = []
for row in rows:
cells = row.find_all("td")
cells = cells[0:14]
cy_data.append([cell.text for cell in cells]) # For each "td" tag, get the text inside it
cy_data = pd.DataFrame(cy_data, columns=COLUMNS)
#Create player column in first column and derive the player from the URL
cy_data.insert(0, 'Player', url)
cy_data['Player'] = cy_data['Player'].str.split('/').str[5].str.split('-').str[0].str.title() + ' ' + cy_data['Player'].str.split('/').str[5].str.split('-').str[1].str.title()
dataframes.append(cy_data)
table2 = soup.find_all('table')[1] # Find the second "table" tag in the page
rows2 = table2.find_all("tr")
cy_data2 = []
for row2 in rows2:
cells2 = row2.find_all("td")
cells2 = cells2[0:14]
cy_data2.append([cell.text for cell in cells2]) # For each "td" tag, get the text inside it
cy_data2 = pd.DataFrame(cy_data2, columns=COLUMNS2)
cy_data2.insert(0, 'Player', url)
cy_data2['Player'] = cy_data2['Player'].str.split('/').str[5].str.split('-').str[0].str.title() + ' ' + cy_data2['Player'].str.split('/').str[5].str.split('-').str[1].str.title()
dataframes2.append(cy_data2)
data = pd.concat(dataframes).reset_index()
data2 = pd.concat(dataframes).reset_index()
data3 = data.merge(data2, on=['index', 'Player'], suffixes=('',' '))
#Filter on None rows
data3 = data3.loc[data3['School'].notnull()].drop('index', axis=1)
display(data, data2, data3)
Upvotes: 1