Reputation: 612
I am a beginner of Pandas, so my question is very basic. I have a dataset, which has seperate columns for date and time as following
Date Time Ooen High Low Close Vol
0 2000.12.22 12:00 0.91810 0.92620 0.91650 0.92320 2244
1 2000.12.22 16:00 0.92260 0.92520 0.92220 0.92310 1688
2 2000.12.22 20:00 0.92300 0.92580 0.92260 0.92420 955
3 2000.12.23 00:01 0.92410 0.92450 0.92270 0.92320 168
4 2000.12.25 00:00 0.92300 0.92460 0.92300 0.92420 260
The type of Date and Time are
type(df['Date'])
pandas.core.series.Series
type(df['Time'])
pandas.core.series.Series
I don't know how to merge them into a timestamp like
'2015-07-04 00:00:00'
Could anyone please help me?
Upvotes: 0
Views: 113
Reputation: 1267
You could try something like this -
df['Datetime'] = pd.to_datetime(df['Date'] + ' ' + df['Time'], format='%Y.%m.%d %H:%M')
df
Date Time Open High Low Close Vol Datetime
0 2000.12.22 12:00 0.9181 0.9262 0.9165 0.9232 2244 2000-12-22 12:00:00
1 2000.12.22 16:00 0.9226 0.9252 0.9222 0.9231 1688 2000-12-22 16:00:00
2 2000.12.22 20:00 0.9230 0.9258 0.9226 0.9242 955 2000-12-22 20:00:00
3 2000.12.23 00:01 0.9241 0.9245 0.9227 0.9232 168 2000-12-23 00:01:00
4 2000.12.25 00:00 0.9230 0.9246 0.9230 0.9242 260 2000-12-25 00:00:00
Upvotes: 3
Reputation: 9
try given below code.
df['datetime'] = df[df.columns[1:]].apply(lambda x:
','.join(x.dropna().astype(str)),axis=1)
Upvotes: -1