Benjamin R
Benjamin R

Reputation: 33

difference between tf.keras.losses.SparseCategoricalCrossentropy() vs "sparse_categorical_crossentropy" as loss

I'm implementing a multi class classification problem,

  1. when I'm using my loss as tf.keras.losses.SparseCategoricalCrossentropy(), I'm getting very less accuracy
model.compile(optimizer="adam", loss=tf.keras.losses.SparseCategoricalCrossentropy(), metrics=["accuracy"])
  1. And when I use loss as "sparse_categorical_crossentropy", I'm getting much higher accuracy
model.compile(optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]) 

Upvotes: 1

Views: 871

Answers (1)

Saichethan M. Reddy
Saichethan M. Reddy

Reputation: 96

it's because when you use

loss=tf.keras.losses.SparseCategoricalCrossentropy() 

metrics should

"sparse_categorical_accuracy" not "accuracy"

Upvotes: 3

Related Questions