Reputation: 399
I would like to use MultiOutputRegressor
from scikit-learn to train a XGB on a multi output regression problem. But I can't pass a fit_params
dictionary to the .fit
method of a MultiOutputRegressor
. It looks like it doesn't recognize the parameters inside...
I receive this error:
from sklearn.multioutput import MultiOutputRegressor
from xgboost.sklearn import XGBRegressor
XGB = XGBRegressor(n_jobs=1, max_depth=10, n_estimators=100, learning_rate=0.2)
fit_params = {'early_stopping_rounds':5,
'eval_set':[(X_holdout,Y_holdout)],
'eval_metric':'mae',
'verbose':False}
multi = MultiOutputRegressor(XGB, n_jobs=-1)
multi.fit(X_train,Y_train,**fit_params)
Traceback (most recent call last):
File "<ipython-input-16-e245db56e1be>", line 9, in <module>
multi.fit(X_train,Y_train,**fit_params)
TypeError: fit() got an unexpected keyword argument 'early_stopping_rounds'
What is strange is that it works with RandomizedSearchCV
from sklearn.model_selection import RandomizedSearchCV
XGB_cv = RandomizedSearchCV(XGB, params, cv=5, n_jobs=-1, verbose=1, n_iter=1000, scoring='neg_mean_absolute_error')
XGB_cv.fit(X_train, Y_train,**fit_params)
Upvotes: 1
Views: 832
Reputation: 3308
It seems that you have installed scikit-learn package version where **fit_params param of fit method is not implemented for MultiOutputRegressor. You can check version of installed package by using following commands:
import sklearn
print(sklearn.__version__)
After upgrading scikit-learn package to version 0.23.1 you can use **fit_params in fit method of MultiOutputRegressor object. You can upgrade it using this way:
pip install --upgrade scikit-learn
Upvotes: 2