Reputation: 9
I am having two dataframe like described below
Dataframe 1
P_ID P_Name P_Description P_Size
100 Moto Mobile 16
200 Apple Mobile 15
300 Oppo Mobile 18
Dataframe 2
P_ID List_Code P_Amount
100 ALPHA 20000
100 BETA 60000
300 GAMMA 15000
Requirement : Need to join the two dataframe by P_ID.
Information about the dataframe : In dataframe 1 P_ID is a primary key and dataframe 2 does't have any primary attribute.
How to join the dataframe Need to create new columns in dataframe 1 from the value of dataframe 2 List_Code appends with "_price". If dataframe 2 List_Code contains 20 unique values we need to create 20 column in dataframe 1. Then, we have fill the value in newly created column in dataframe 1 from the dataframe 2 P_Amount column based on P_ID if present else fills with zero. After creation of dataframe we need to join the dataframe based on the P_ID. If we add the column with the expected value in dataframe 1 we can join the dataframe. My problem is creating new columns with the expected value.
The expected dataframe is shown below
Expected dataframe
P_ID P_Name P_Description P_Size ALPHA_price BETA_price GAMMA_price
100 Moto Mobile 16 20000 60000 0
200 Apple Mobile 15 0 0 0
300 Oppo Mobile 18 0 0 15000
Can you please help me to solve the problem, thanks in advance.
Upvotes: 1
Views: 592
Reputation: 11937
For you application, you need to pivot the second dataframe and then join the first dataframe on to the pivoted result on P_ID using left join.
See the code below.
df_1 = pd.DataFrame({'P_ID' : [100, 200, 300], 'P_Name': ['Moto', 'Apple', 'Oppo'], 'P_Size' : [16, 15, 18]})
sdf_1 = sc.createDataFrame(df_1)
df_2 = pd.DataFrame({'P_ID' : [100, 100, 300], 'List_Code': ['ALPHA', 'BETA', 'GAMMA'], 'P_Amount' : [20000, 60000, 10000]})
sdf_2 = sc.createDataFrame(df_2)
sdf_pivoted = sdf_2.groupby('P_ID').pivot('List_Code').agg(f.sum('P_Amount')).fillna(0)
sdf_joined = sdf_1.join(sdf_pivoted, on='P_ID', how='left').fillna(0)
sdf_joined.show()
+----+------+------+-----+-----+-----+
|P_ID|P_Name|P_Size|ALPHA| BETA|GAMMA|
+----+------+------+-----+-----+-----+
| 300| Oppo| 18| 0| 0|10000|
| 200| Apple| 15| 0| 0| 0|
| 100| Moto| 16|20000|60000| 0|
+----+------+------+-----+-----+-----+
You can change the column names or ordering of the dataframe as needed.
Upvotes: 1