Reputation: 6472
Suppose you have got a list comprehension in python, like
Values = [ f(x) for x in range( 0, 1000 ) ]
with f being just a function without side effects. So all the entries can be computed independently.
Is Python able to increase the performance of this list comprehension compared with the "obvious" implementation; e.g. by shared-memory-parallelization on multicore CPUs?
Upvotes: 9
Views: 4320
Reputation: 27585
Try if the following can be faster:
Values = map(f,range(0,1000))
That's a functionnal manner to code
Another idea is to replace all occurences of Values in the code by the generator expression
imap(f,range(0,1000)) # Python < 3
map(f,range(0,1000)) # Python 3
Upvotes: 0
Reputation: 53879
In Python 3.2 they added concurrent.futures
, a nice library for solving problems concurrently. Consider this example:
import math, time
from concurrent import futures
PRIMES = [112272535095293, 112582705942171, 112272535095293, 115280095190773, 115797848077099, 1099726899285419, 112272535095293, 112582705942171, 112272535095293, 115280095190773, 115797848077099, 1099726899285419]
def is_prime(n):
if n % 2 == 0:
return False
sqrt_n = int(math.floor(math.sqrt(n)))
for i in range(3, sqrt_n + 1, 2):
if n % i == 0:
return False
return True
def bench(f):
start = time.time()
f()
elapsed = time.time() - start
print("Completed in {} seconds".format(elapsed))
def concurrent():
with futures.ProcessPoolExecutor() as executor:
values = list(executor.map(is_prime, PRIMES))
def listcomp():
values = [is_prime(x) for x in PRIMES]
Results on my quad core:
>>> bench(listcomp)
Completed in 14.463825941085815 seconds
>>> bench(concurrent)
Completed in 3.818351984024048 seconds
Upvotes: 10
Reputation: 363807
No, Python will not magically parallelize this for you. In fact, it can't, since it cannot prove the independence of the entries; that would require a great deal of program inspection/verification, which is impossible to get right in the general case.
If you want quick coarse-grained multicore parallelism, I recommend joblib instead:
from joblib import delayed, Parallel
values = Parallel(n_jobs=NUM_CPUS)(delayed(f)(x) for x in range(1000))
Not only have I witnessed near-linear speedups using this library, it also has the great feature of signals such as the one from Ctrl-C onto its worker processes, which cannot be said of all multiprocess libraries.
Note that joblib doesn't really support shared-memory parallelism: it spawns worker processes, not threads, so it incurs some communication overhead from sending data to workers and results back to the master process.
Upvotes: 8