Reputation: 45991
I'm using Tensorflow 2.1.0 with Python 3.7.7, in an Anaconda 3 environment running on Windows 7 64bits.
This is my network:
import tensorflow as tf
from tensorflow import keras
from tensorflow.python.keras.models import Model
from tensorflow.python.keras.layers import Input, Dense, Conv2D, UpSampling2D, MaxPooling2D, Flatten, ZeroPadding2D
from tensorflow.python.keras.optimizers import Adam
def vgg16_encoder_decoder(input_size = (200,200,1)):
#################################
# Encoder
#################################
inputs = Input(input_size, name = 'input')
conv1 = Conv2D(64, (3, 3), activation = 'relu', padding = 'same', name ='conv1_1')(inputs)
conv1 = Conv2D(64, (3, 3), activation = 'relu', padding = 'same', name ='conv1_2')(conv1)
pool1 = MaxPooling2D(pool_size = (2,2), strides = (2,2), name = 'pool_1')(conv1)
conv2 = Conv2D(128, (3, 3), activation = 'relu', padding = 'same', name ='conv2_1')(pool1)
conv2 = Conv2D(128, (3, 3), activation = 'relu', padding = 'same', name ='conv2_2')(conv2)
pool2 = MaxPooling2D(pool_size = (2,2), strides = (2,2), name = 'pool_2')(conv2)
conv3 = Conv2D(256, (3, 3), activation = 'relu', padding = 'same', name ='conv3_1')(pool2)
conv3 = Conv2D(256, (3, 3), activation = 'relu', padding = 'same', name ='conv3_2')(conv3)
conv3 = Conv2D(256, (3, 3), activation = 'relu', padding = 'same', name ='conv3_3')(conv3)
pool3 = MaxPooling2D(pool_size = (2,2), strides = (2,2), name = 'pool_3')(conv3)
conv4 = Conv2D(512, (3, 3), activation = 'relu', padding = 'same', name ='conv4_1')(pool3)
conv4 = Conv2D(512, (3, 3), activation = 'relu', padding = 'same', name ='conv4_2')(conv4)
conv4 = Conv2D(512, (3, 3), activation = 'relu', padding = 'same', name ='conv4_3')(conv4)
pool4 = MaxPooling2D(pool_size = (2,2), strides = (2,2), name = 'pool_4')(conv4)
conv5 = Conv2D(512, (3, 3), activation = 'relu', padding = 'same', name ='conv5_1')(pool4)
conv5 = Conv2D(512, (3, 3), activation = 'relu', padding = 'same', name ='conv5_2')(conv5)
conv5 = Conv2D(512, (3, 3), activation = 'relu', padding = 'same', name ='conv5_3')(conv5)
pool5 = MaxPooling2D(pool_size = (2,2), strides = (2,2), name = 'pool_5')(conv5)
#################################
# Decoder
#################################
#conv1 = Conv2DTranspose(512, (2, 2), strides = 2, name = 'conv1')(pool5)
upsp1 = UpSampling2D(size = (2,2), name = 'upsp1')(pool5)
conv6 = Conv2D(512, 3, activation = 'relu', padding = 'same', name = 'conv6_1')(upsp1)
conv6 = Conv2D(512, 3, activation = 'relu', padding = 'same', name = 'conv6_2')(conv6)
conv6 = Conv2D(512, 3, activation = 'relu', padding = 'same', name = 'conv6_3')(conv6)
upsp2 = UpSampling2D(size = (2,2), name = 'upsp2')(conv6)
conv7 = Conv2D(512, 3, activation = 'relu', padding = 'same', name = 'conv7_1')(upsp2)
conv7 = Conv2D(512, 3, activation = 'relu', padding = 'same', name = 'conv7_2')(conv7)
conv7 = Conv2D(512, 3, activation = 'relu', padding = 'same', name = 'conv7_3')(conv7)
zero1 = ZeroPadding2D(padding = ((1, 0), (1, 0)), data_format = 'channels_last', name='zero1')(conv7)
upsp3 = UpSampling2D(size = (2,2), name = 'upsp3')(zero1)
conv8 = Conv2D(256, 3, activation = 'relu', padding = 'same', name = 'conv8_1')(upsp3)
conv8 = Conv2D(256, 3, activation = 'relu', padding = 'same', name = 'conv8_2')(conv8)
conv8 = Conv2D(256, 3, activation = 'relu', padding = 'same', name = 'conv8_3')(conv8)
upsp4 = UpSampling2D(size = (2,2), name = 'upsp4')(conv8)
conv9 = Conv2D(128, 3, activation = 'relu', padding = 'same', name = 'conv9_1')(upsp4)
conv9 = Conv2D(128, 3, activation = 'relu', padding = 'same', name = 'conv9_2')(conv9)
upsp5 = UpSampling2D(size = (2,2), name = 'upsp5')(conv9)
conv10 = Conv2D(64, 3, activation = 'relu', padding = 'same', name = 'conv10_1')(upsp5)
conv10 = Conv2D(64, 3, activation = 'relu', padding = 'same', name = 'conv10_2')(conv10)
conv11 = Conv2D(1, 3, activation = 'relu', padding = 'same', name = 'conv11')(conv10)
model = Model(inputs = inputs, outputs = conv11, name = 'vgg-16_encoder_decoder')
return model
And this is the code that runs the network:
import tensorflow as tf
import numpy as np
import viacognita.utils as utils
import viacognita.vgg_16 as vgg16
# Global variables
#-------------------------------------------------------------------------------
image_rows = 200
image_cols = 200
channels = 1
# Load a preprocess datasets
D = ... # It's a Numpy array with shape is (960, 2, 200, 200, 1)
# Model's functions definitions.
# ------------------------------------------------------------------------------
def loss(model, x, y):
y_ = model(x)
return tf.convert_to_tensor(np.linalg.norm(y - y_), dtype=tf.float32)
def grad(model, inputs, targets):
with tf.GradientTape() as tape:
#tape.watch(model.trainable_variables)
loss_value = loss(model, inputs, targets)
return loss_value, tape.gradient(loss_value, model.trainable_variables)
# Model, optimizer and learner.
# ------------------------------------------------------------------------------
# Get the model.
model = vgg16.vgg16_encoder_decoder((image_rows, image_rows, channels))
# Lets set up the optimizer.
optimizer = tf.keras.optimizers.SGD(learning_rate=0.01)
features = D[:,0,:]
labels = D[:,1,:]
print("D shape: ", D.shape) # Shape is (960, 2, 200, 200, 1)
print("Features shape: ", features.shape) # Shape is (960, 200, 200, 1)
print("Labels shape: ", labels.shape) # Shape is (960, 200, 200, 1)
print(features[0, :].shape) # Shape is (200, 200, 1)
print(labels[0,:].shape) # Shape is (200, 200, 1)
# We'll use this to calculate a single optimization step:
loss_value, grads = grad(model, tf.convert_to_tensor(features[np.newaxis, 0,:], dtype=tf.float32), tf.convert_to_tensor(labels[np.newaxis, 0, :], dtype=tf.float32))
print("Step: {}, Initial Loss: {}".format(optimizer.iterations.numpy(),
loss_value.numpy()))
I have copied many code from "Tensorflow - Custom training: walkthrough".
My problem is that function grad
returns 54 None
.
I have tried to add the code, now commented, tape.watch(model.trainable_variables)
, but it still returns 54 None
.
Any idea about what I'm doing wrong?
Upvotes: 1
Views: 174
Reputation: 59731
The problem is that you are using a NumPy function as part of your loss computation, and then converting the result of that function into a TensorFlow tensor again. This gives a correct loss value, but interrupts the gradient chain registered by the gradient tape. Simply use the equivalent TensorFlow function instead, tf.norm
:
def loss(model, x, y):
y_ = model(x)
return tf.norm(y - y_)
Upvotes: 1