Reputation: 13
I am doing a little complicated integral with python and I would need the result to be a numerical value, for example 2003708.58843. Now my python program gives some really weird result containing some "hyper" function etc. If someone can help me with this I would appreciate it really much.
Current program is here:
import sympy as sp
x = sp.symbols('x')
f1 = 5000 + ((-(-7000+x)*(-3000+x))**(1/2))
f2 = 5000 - ((-(-7000+x)*(-3000+x))**(1/2))
minimum1 = 3000
maximum1 = (500/3)*(35-2*((61)**(1/2)))
int1 = sp.integrate(f1, (x,minimum1,maximum1))
int2 = sp.integrate(f2, (x,minimum1,maximum1))
minimum2 = (500/3)*(35-2*((61)**(1/2)))
maximum2 = 4500
f3 = 5000 + (1/2)*((-(-4500+x)*(-500+x))**(1/2))
f4 = 5000 - (1/2)*((-(-4500+x)*(-500+x))**(1/2))
int3 = sp.integrate(f3, (x,minimum2,maximum2))
int4 = sp.integrate(f4, (x,minimum2,maximum2))
I1 = int1-int2
I2 = int3-int4
total = I1 + I2
print(total)
Upvotes: 1
Views: 1374
Reputation: 14480
When using sympy you should be careful about using floats e.g. 1/2
and instead use exact rationals e.g. Rational(1, 2)
. Changing that I get:
In [2]: import sympy as sp
In [3]: x = sp.symbols('x')
...: f1 = 5000 + ((-(-7000+x)*(-3000+x))**(Rational(1, 2)))
...: f2 = 5000 - ((-(-7000+x)*(-3000+x))**(Rational(1, 2)))
...: minimum1 = 3000
...: maximum1 = (Rational(500, 3))*(35-2*((61)**(Rational(1, 2))))
...: int1 = sp.integrate(f1, (x,minimum1,maximum1))
In [4]: int1
Out[4]:
_________________ 5/2 3/2 ⎛ _________________⎞
╱ 8500 1000⋅√61 ⎛8500 1000⋅√61⎞ ⎛8500 1000⋅√61⎞ ⎜ ╱ 8500 1000⋅√61 ⎟
4000000⋅ ╱ ──── - ──────── ⎜──── - ────────⎟ 3000⋅⎜──── - ────────⎟ ⎜√10⋅ ╱ ──── - ──────── ⎟
5000000⋅√61 ╲╱ 3 3 ⎝ 3 3 ⎠ ⎝ 3 3 ⎠ ⎜ ╲╱ 3 3 ⎟ 42500000
- ─────────── - ───────────────────────────── - ─────────────────────── + ───────────────────────── + 4000000⋅asin⎜─────────────────────────⎟ + ────────
3 _________________ _________________ _________________ ⎝ 200 ⎠ 3
╱ 3500 1000⋅√61 ╱ 3500 1000⋅√61 ╱ 3500 1000⋅√61
╱ ──── + ──────── 2⋅ ╱ ──── + ──────── ╱ ──── + ────────
╲╱ 3 3 ╲╱ 3 3 ╲╱ 3 3
If you want to evaluate that result in floating point to 15 decimal digits then you can do:
In [5]: int1.evalf()
Out[5]: 1294014.90427420
To compute the approximate numeric result directly using numerical quadrature (analogous to the answer from snatchysquid) you can do
In [6]: sp.Integral(f1, (x, minimum1, maximum1)).evalf()
Out[6]: 1294014.90427420
Upvotes: 2
Reputation: 1352
Try this:
from scipy.integrate import quad
def integrand(x):
return x**2
ans, err = quad(integrand, 0, 1)
print ans
Simply change the integrand
function to whatever you want and 1, 0
to the limits of integration you desire.
code taken from here.
Upvotes: 3