Reputation: 1100
I am trying to take a artist with matching id that make music across various singular to combinations of genres.
This is what I am trying to do
Artist | Id | Genre | Jazz | Blues | Rock | Trap | Rap | Hip-Hop | Pop | Rb |
----------------------------------------------------------------------------------------------------
Bob | 1 | [Jazz, Blues] | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0
----------------------------------------------------------------------------------------------------
Fred | 2 | [Rock,Jazz] | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0
----------------------------------------------------------------------------------------------------
Jeff | 3 | [Trap, Rap, Hip-Hop] | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0
----------------------------------------------------------------------------------------------------
Amy | 4 | [Pop, Rock, Jazz] | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0
----------------------------------------------------------------------------------------------------
Mary | 5 | [Hip-Hop, Jazz, Rb] | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1
----------------------------------------------------------------------------------------------------
this is the error i get
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-50-7a4ed81e14d7> in <module>
11 for index, row in artist_df.iterrows():
12 x.append(index)
---> 13 for i in row['genre']:
14 artists_with_genres.at[index, genre] = 1
15
TypeError: 'float' object is not iterable
These (artists) genres are attributes I will use to help to determine a similar artists when combined with other factors like years, songs or demographics.
The new columns I am creating and iterating through will specify whether a artist is in a genre. With 1/0 to simply represent whether the artist is rock/hip-hop/trap etc. or not. using binary representation of attributes.
this is the current dataframe
Took my data frame and split the genres into individual so I can convert to 1/0 binary representation.
Do I need to set genre to the index?
1st took data frame like this
Artist | Id | Genre |
--------------------------------------
Bob | 1 | Jazz | Blues
--------------------------------------
Fred | 2 | Rock | Jazz
--------------------------------------
Jeff | 3 | Trap | Rap | Hip-Hop
--------------------------------------
Amy | 4 | Pop | Rock | Jazz
--------------------------------------
Mary | 5 | Hip-Hop | Jazz | Rb
This is what I am trying to do
Artist | Id | Genre | Jazz | Blues | Rock | Trap | Rap | Hip-Hop | Pop | Rb |
----------------------------------------------------------------------------------------------------
Bob | 1 | [Jazz, Blues] | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0
----------------------------------------------------------------------------------------------------
Fred | 2 | [Rock,Jazz] | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0
----------------------------------------------------------------------------------------------------
Jeff | 3 | [Trap, Rap, Hip-Hop] | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0
----------------------------------------------------------------------------------------------------
Amy | 4 | [Pop, Rock, Jazz] | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0
----------------------------------------------------------------------------------------------------
Mary | 5 | [Hip-Hop, Jazz, Rb] | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1
----------------------------------------------------------------------------------------------------
Every genre is separated by a | so we simply have to call the split function on |.
[![artist_df\['genres'\] = artist_df.genres.str.split('|')
artist_df.head()][1]][1]
First make a copy of the df into df.
artists_with_genres = df.copy(deep=True)
Then iterate through df, then append the artists genres as columns of 1s or 0s.
1 if that column contains artists in the genre at the present index and 0 if not.
x = []
for index, row in artist_df.iterrows():
x.append(index)
for genre in row['genres']:
artists_with_genres.at[index, genre] = 1
**Confirm that every row has been iterated and acted upon.**
print(len(x) == len(artist_df))
artists_with_genres.head(30)
Filling in the NaN values with 0 to show that a artist doesn't have that column's genre.
artists_with_genres = artists_with_genres.fillna(0)
artists_with_genres.head(3)
Upvotes: 1
Views: 948
Reputation: 7594
Try this using get_dummies
:
df['Genre'] = df['Genre'].str.split('|')
dfx = pd.get_dummies(pd.DataFrame(df['Genre'].tolist()).stack()).sum(level=0)
df = pd.concat([df, dfx], axis=1).drop(columns=['Genre'])
print(df)
Artist Id Blues Hip-Hop Jazz Pop Rap Rb Rock Trap
0 Bob 1 1 0 1 0 0 0 0 0
1 Fred 2 0 0 1 0 0 0 1 0
2 Jeff 3 0 1 0 0 1 0 0 1
3 Amy 4 0 0 1 1 0 0 1 0
4 Mary 5 0 1 1 0 0 1 0 0
For detailed explanation, look here -> Pandas column of lists to separate columns
Upvotes: 5