Reputation: 79
I have a data set that looks, in abbreviate form, like this:
library(tidyverse)
dat_s<-tibble(
type=c(rep("A", 9), rep("B", 8), rep("C", 10)),
ref=c("ref3", "ref3", "ref1", "ref2", "ref2", "ref1", "ref2", "ref2", "ref2", "ref2",
"ref1", "ref2", "ref2", "ref3", "ref2", "ref3", "ref1", "ref3",
"ref2", "ref3", "ref1", "ref1", "ref3", "ref1", "ref1", "ref2", "ref2"),
info=as.character(sample(100, 27)),
liv=c(3.0e-05, 2.9e-07, 2.2e-07, 2.7e-07, 2.6e-06, 4.8e-07, 1.4e-05, 2.6e-06, 7.7e-06, 2.2e-06,
1.5e-07, 1.6e-07, 1.8e-06, 6.1e-08, 4.9e-06, 4.9e-06, 1.8e-06, 1.5e-07,
4.3e-08, 1.8e-06, 1.0e-07, 1.6e-07, 9.7e-07, 1.0e-06, 6.4e-07, 1.2e-07, 5.7e-06),
prod=c(0.00, 2, 3, 4.80, 2.10, 5.10, 0.00, 0.13, 2.00, 0.13, 0.00, 4.10, 4.60, 2.10, 0.26, 0.00,
4.60, 0.00, 4.60, 2.10, 4.80, 0.00, 0.00, 1.80, 3.60, 4.10, 0.00)
)%>%
mutate(livp1=liv+1)
I want to calculate dose response relationships for each combination of type
and ref
, make predictions to plot a curve, and calculate residuals. The info
column is to reflect that I have additional columns in this data frame which I need to preserve, but are not important in the dose-response analysis.
I start by creating the models using a function and a nested data frame:
dr_s<-function(df){drc::drm(data=df, prod~log(livp1), fct=drc::LL.3())}
dat_mods<-
dat_s%>%
group_by(type, ref)%>%
nest() %>%
mutate(dr_mod=map(data, dr_s))
Which works to create the models and put them in the data frame. To use add_predictions
with models of the type drm
, the input has to be a data.frame
(rather than a tibble
). When I try to add predictions for each livp1
variable (according to the comments below):
dat_mods%>%
mutate(mod_preds=map2(data, dr_mod, ~add_predictions(data=as.data.frame(.x), model=.y))))
I get a non-numeric argument to binary operator
error message. This code works fine when the info
column is not character
class. However, I need to retain this information with the predicted data, and would like to avoid pulling it from the data frame if possible.
Any guidance is appreciated!
Upvotes: 1
Views: 518
Reputation: 24878
This one was pretty silly, the predict
method for models of class drm
doesn't work on objects of class tibble
. So you have to convert .x
to data.frame
.
dat_s%>%
group_by(type, ref)%>%
nest() %>%
mutate(dr_mod=map(data, dr_s),
mod_preds=map2(data, dr_mod,
~modelr::add_predictions(data = as.data.frame(.x[,"livp1"]),
model = .y)))
## A tibble: 9 x 5
## Groups: type, ref [9]
# type ref data dr_mod mod_preds
# <chr> <chr> <list> <list> <list>
#1 A ref3 <tibble [2 × 4]> <drc> <df[,2] [2 × 2]>
#2 A ref1 <tibble [2 × 4]> <drc> <df[,2] [2 × 2]>
#3 A ref2 <tibble [5 × 4]> <drc> <df[,2] [5 × 2]>
#4 B ref2 <tibble [4 × 4]> <drc> <df[,2] [4 × 2]>
#5 B ref1 <tibble [2 × 4]> <drc> <df[,2] [2 × 2]>
#6 B ref3 <tibble [2 × 4]> <drc> <df[,2] [2 × 2]>
#7 C ref3 <tibble [3 × 4]> <drc> <df[,2] [3 × 2]>
#8 C ref2 <tibble [3 × 4]> <drc> <df[,2] [3 × 2]>
#9 C ref1 <tibble [4 × 4]> <drc> <df[,2] [4 × 2]>
Upvotes: 1