Reputation: 93
I have a text file containing repeating lines and I want to convert into a dataframe.
10/21/2019
abcdef
100.00
10/22/2019
ghijk
120.00
There is an obvious pattern and I'd like the dataframe to look like this:
Data | Description | Amount
10/21/2019 | abcdef | 100.00
10/22/2019 | ghijk | 120.00
How is this done?
Thanks.
Upvotes: 2
Views: 1015
Reputation: 28679
A bit of regex to pull out the details, then forward fill on the first two columns and remove the nulls
pattern = r"(?P<Date>\d{2}/\d{2}/\d{4})|(?P<Description>[a-z]+)|(?P<Amount>\d{1,}\.00)"
res = (df1.text.str.extract(pattern)
.assign(Date = lambda x: x.Date.ffill(),
Description = lambda x: x.Description.ffill()
)
.dropna(how='any')
)
res
Date Description Amount
2 10/21/2019 abcdef 100.00
5 10/22/2019 ghijk 120.00
If you don't care about regex, and the format is constant, then we can reshape the data with numpy and create a new dataframe.
#reshape the data
#thanks to @Chester
#removes unnecessary computation
res = np.reshape(df1.to_numpy(),(-1,3))
#create new dataframe
pd.DataFrame(res,columns=['Date','Description','Amount'])
Date Description Amount
0 10/21/2019 abcdef 100.00
1 10/22/2019 ghijk 120.00
Upvotes: 4
Reputation: 5410
Read raw data from a file to a Series
and convert to PandasArray
to simplify dealing with indices later:
raw_data = pd.read_csv("path\to\a\data\file.txt", names=['raw_data'], squeeze=True).array
Create a DataFrame
using slicing:
df = pd.DataFrame(data={'Data': raw_data[::3], 'Description': raw_data[1::3], 'Amount': raw_data[2::3]})
Just 2 simple steps without regexes and unnecessary transformations. Short and efficient.
Upvotes: 3
Reputation: 344
You can use following code if your string has exact pattern you mentioned
string = '''10/21/2019
abcdef
100.00
10/22/2019
ghijk
120.00'''
token_list = string.split()
Data = token_list[0::3]
Description = token_list[1::3]
Amount = token_list[2::3]
Aggregate = list(zip(Data, Description, Amount))
df = pd.DataFrame(Aggregate, columns = ['Data ', 'Description', 'Amount'])
Upvotes: 3