Reputation: 61
I'm trying to build a simple classification CNN that would divide a set of 1233 images into 4 categories using this code:
unclassified_datagen = keras.preprocessing.image.ImageDataGenerator(
rescale=1. / 255,
horizontal_flip=True
)
unclassified_generator = train_datagen.flow_from_directory(
'data/unclassified',
target_size=(120, 120),
batch_size=1233,
class_mode='input',
shuffle=False,
)
model_unclassified = keras.Sequential()
model_unclassified.add(layers.Conv2D(1233, (3, 3), input_shape=(120, 120, 3), padding="SAME"))
model_unclassified.add(layers.Dense(64, activation='relu'))
model_unclassified.add(layers.Dense(4, activation='sigmoid'))
model_unclassified.compile(loss='sparse_categorical_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
model_unclassified.fit_generator(unclassified_generator, epochs=1)
But I get a following error: ValueError: Error when checking target: expected dense_2 to have shape (120, 120, 1) but got array with shape (120, 120, 3)
What am I doing wrong?
Upvotes: 2
Views: 41
Reputation: 2089
You should add Flatten
layer, because Conv2D
returns 3D array for each sample:
model_unclassified = keras.Sequential()
model_unclassified.add(layers.Conv2D(1233, (3, 3), input_shape=(120, 120, 3), padding="SAME"))
model_unclassified.add(layers.Flatten())
model_unclassified.add(layers.Dense(64, activation='relu'))
model_unclassified.add(layers.Dense(4, activation='sigmoid'))
Upvotes: 1