Reputation: 126
Assuming that the value exists, how can I for example, create another column "testFinal" in the dataframe where I will have the absolute value of df["test"]- " df["test"] which is 0.2 seconds after " for example, the first value for testFinal is the absolute value of the difference between 2 and the value 0.2 seconds after -> so 8, the result is abs(2-8) = 6
My goal is to calculate "testFinal"
I don't know if its clear so here is the example
NB : the Timestamp is not homogeneous, so the interval between two values can be different over time
Thanks a lot
Here is the code for the dataframe
df = pd.DataFrame({'Timestamp':[11.1,11.2,11.3,11.4,11.5,11.6,11.7,11.8,11.9,12.0,12.10],
'test':[2,22,8,4,5,4,5,3,54,23,89],
'testFinal':[6,18,3,0,0,1,49,20,35,np.NaN,np.NaN]})
Upvotes: 3
Views: 104
Reputation: 71689
First, create a new temporary column temp
obtained from converting the Timestamp
column to timedelta
using pd.to_timedelta
, then set this temp
column as dataframe index
, then create a new column testFinal
having the values as this new index + 0.2 seconds
, then using Series.map
, map the testFinal
column to the values from df['test']
column, thus now the testFinal
column should have values corresponding to the values in test
column 0.2s
later, thereafter you can subtract the values in the testFinal
and test
column to get the desired result:
df['temp'] = pd.to_timedelta(df['Timestamp'], unit='s')
df = df.set_index('temp')
df['testFinal'] = df.index + pd.Timedelta(seconds=0.2)
df['testFinal'] = df['testFinal'].map(df['test']).sub(df['test']).abs()
df = df.reset_index(drop=True)
# print(df)
Timestamp test testFinal
0 11.1 2 6.0
1 11.2 22 18.0
2 11.3 8 3.0
3 11.4 4 0.0
4 11.5 5 0.0
5 11.6 4 1.0
6 11.7 5 49.0
7 11.8 3 20.0
8 11.9 54 35.0
9 12.0 23 NaN
10 12.1 89 NaN
Upvotes: 2
Reputation: 7353
You could use numpy
as follows. I created a new column test_final
to compare with the expected testFinal
column.
import numpy as np
test = df.test.values
df['test_final'] = np.abs(test - np.concatenate((test[2:], np.array([np.nan]*2)), axis=0))
print(df)
Output:
Timestamp test testFinal test_final
0 11.1 2 6.0 6.0
1 11.2 22 18.0 18.0
2 11.3 8 3.0 3.0
3 11.4 4 0.0 0.0
4 11.5 5 0.0 0.0
5 11.6 4 1.0 1.0
6 11.7 5 49.0 49.0
7 11.8 3 20.0 20.0
8 11.9 54 35.0 35.0
9 12.0 23 NaN NaN
10 12.1 89 NaN NaN
Upvotes: 0