Reputation: 887
I have two images and a mask, all of same dimensions, as Numpy arrays:
I would like to merge them in such a way that the output will be like this:
def merge(lena, rocket, mask):
'''Mask init and cropping'''
mask = np.zeros(lena.shape[:2], dtype='uint8')
cv2.fillConvexPoly(mask, circle, 255) # might be polygon
'''Bitwise operations'''
lena = cv2.bitwise_or(lena, lena, mask=mask)
mask_inv = cv2.bitwise_not(mask) # mask inverting
rocket = cv2.bitwise_or(rocket, rocket, mask=mask_inv)
output = cv2.bitwise_or(rocket, lena)
return output
This code gives me this result:
Applying cv2.GaussianBlur(mask, (51,51), 0)
distorts colors of overlayed image in different ways.
Other SO questions relate to similar problems but not solving exactly this type of blurred compositing.
mask = np.zeros(lena.shape[:2], dtype='uint8')
mask = cv2.GaussianBlur(mask, (51,51), 0)
mask = mask[..., np.newaxis]
cv2.fillConvexPoly(mask, circle, 1)
output = mask * lena + (1 - mask) * rocket
mask = np.zeros(generated.shape[:2])
polygon = np.array(polygon, np.int32) # 2d array of x,y coords
cv2.fillConvexPoly(mask, polygon, 1)
mask = cv2.GaussianBlur(mask, (51, 51), 0)
mask = mask.astype('float32')
mask = cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR)
foreground = cv2.multiply(lena, mask, dtype=cv2.CV_8U)
background = cv2.multiply(rocket, (1 - mask), dtype=cv2.CV_8U)
output = cv2.add(foreground, background)
Please advise how can I blur a mask, properly merge it with foreground and then overlay on background image?
Upvotes: 0
Views: 1299
Reputation: 53081
Here is how to do that in Python/OpenCV. Your second method is close.
Input images:
import cv2
import numpy as np
# Read images
image1 = cv2.imread('lena_wide.jpg')
image2 = cv2.imread('rocket.jpg')
circle = cv2.imread('white_circle.jpg', cv2.IMREAD_GRAYSCALE)
# linear blur mask
mask = cv2.blur(circle, (30,30))
# alternate using Gaussian blur
#mask = cv2.GaussianBlur(circle, (0,0), sigmaX=10, sigmaY=10)
# stretch mask to full dynamic range
mask = cv2.normalize(mask, None, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_8U)
# convert mask to float in range 0 to 1
maskf = (mask/255).astype(np.float64)
maskf = cv2.merge([maskf,maskf,maskf])
# apply mask to image1 and inverted mask to image2
result = maskf*image1 + (1-maskf)*image2
result = result.clip(0,255).astype(np.uint8)
# save results
cv2.imwrite('white_circle_ramped.jpg', mask)
cv2.imwrite('lena_wide_rocked_composited.png', result)
# show results
cv2.imshow("mask", mask)
cv2.imshow("result", result)
cv2.waitKey(0)
cv2.destroyAllWindows()
Ramped mask image:
Result:
ADDITION:
Here is an alternate approach using mostly Numpy.
import cv2
import numpy as np
# Read images
image1 = cv2.imread('lena_wide.jpg')
image2 = cv2.imread('rocket.jpg')
circle = cv2.imread('white_circle2.jpg', cv2.IMREAD_GRAYSCALE)
# linear blur mask
mask = cv2.blur(circle, (30,30))
# alternate using Gaussian blur
#mask = cv2.GaussianBlur(circle, (0,0), sigmaX=10, sigmaY=10)
# stretch mask to full dynamic range
mask = cv2.normalize(mask, None, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_8U)
# convert mask to 3 channels
mask = cv2.merge([mask,mask,mask])
# apply mask to image1 and inverted mask to image2
image1_masked = np.multiply(image1, mask/255).clip(0,255).astype(np.uint8)
image2_masked = np.multiply(image2, 1-mask/255).clip(0,255).astype(np.uint8)
# add the two masked images together
result = np.add(image1_masked, image2_masked)
# save results
cv2.imwrite('white_circle_ramped2.jpg', mask)
cv2.imwrite('lena_wide_rocked_composited2.png', result)
# show results
cv2.imshow("mask", mask)
cv2.imshow("image1_masked", image1_masked)
cv2.imshow("image2_masked", image2_masked)
cv2.imshow("result", result)
cv2.waitKey(0)
cv2.destroyAllWindows()
Upvotes: 0
Reputation: 1380
You need to renormalize the mask before blending:
def blend_merge(lena, rocket, mask):
mask = cv2.GaussianBlur(mask, (51, 51), 0)
mask = cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR)
mask = mask.astype('float32') / 255
foreground = cv2.multiply(lena, mask, dtype=cv2.CV_8U)
background = cv2.multiply(rocket, (1 - mask), dtype=cv2.CV_8U)
output = cv2.add(foreground, background)
return output
A full working example is here.
Upvotes: 2