Reputation: 185
I have a video file with 2 dot laser and I want to calculate the distance in pixels between them, I tried this code with OpenCV, but it is not working :
import cv2
import numpy as np
cap = cv2.VideoCapture('D:\Books\Pav Man\PICS\Test\VID_20200609_195155.mp4')
#cap = cv2.VideoCapture(0)
old = 0
while (1):
# Take each frame
ret, frame = cap.read()
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
lower_red = np.array([0, 0, 255])
upper_red = np.array([255, 255, 255])
mask = cv2.inRange(hsv, lower_red, upper_red)
cv2.imshow('mask', mask)
# cv2.imshow('Track Laser', frame)
moments = cv2.moments(hsv[:, :, 2])
output = cv2.connectedComponentsWithStats(mask, 8, cv2.CV_32S)
print (output[3])
print ("----**----")
if moments["m00"] > 0:
x = (moments['m10']/ moments['m00'])
y = (moments['m01']/ moments['m00'])
#print(moments['m00'],moments['m01'],moments['m10'])
#print(x, y)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
this code output = cv2.connectedComponentsWithStats(mask, 8, cv2.CV_32S)
give me the centroid of points , but how to geat each point(laser dot) separately ? if I get the centroid I can measure the distance between these points
Upvotes: 0
Views: 1714
Reputation: 2018
You can do this:
Also, you can select points by brightness only, without even using their color.
import cv2
img = cv2.imread('HAgbc.jpg')
gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
cv2.normalize(gray, gray, 0, 255, cv2.NORM_MINMAX, cv2.CV_8UC1)
points=cv2.threshold(gray, 230, 255, cv2.THRESH_BINARY )[1]
output = cv2.connectedComponentsWithStats(points, 8, cv2.CV_32S)
centroids = output[3]
x,y=(centroids[1]-centroids[2])
dist=cv2.magnitude(x, y)[0]
print('distance is: ', *dist)
Or this code (find two brightness maximum):
import cv2
img = cv2.imread('HAgbc.jpg')
gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
pos1=cv2.minMaxLoc(gray)[3]
cv2.circle(gray, pos1, 30, 0, -1) # masking first spot
pos2=cv2.minMaxLoc(gray)[3]
x=pos1[0]-pos2[0]
y=pos1[1]-pos2[1]
dist=cv2.magnitude(x, y)[0]
print('distance is: ', *dist)
Upvotes: 0
Reputation: 53079
Here is your other way to do that in Python/OpenCV using connectedComponentsWithStats.
Input:
import cv2
import numpy as np
import math
# read image
frame = cv2.imread('red_spots.jpg')
hh, ww = frame.shape[:2]
# convert to hsv hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
# threshold image
lower_red = np.array([0, 0, 225])
upper_red = np.array([255, 255, 255])
thresh = cv2.inRange(hsv, lower_red, upper_red)
# apply close and open morphology to smooth
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (9,9))
morph = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel)
morph = cv2.morphologyEx(morph, cv2.MORPH_OPEN, kernel)
# do connected components processing
nlabels, labels, stats, centroids = cv2.connectedComponentsWithStats(morph, None, None, None, 8, cv2.CV_16U)
# get all areas from stats[label_start_id:label_stop_id, area_flag]
areas = stats[0:, cv2.CC_STAT_AREA]
# draw labels and get centroids and draw centroids
result = frame.copy()
pts = []
for i in range(0, nlabels):
if areas[i] <= ww*hh/5 :
# labels start at 1 not 0
result[labels == i+1] = (0,255,255)
pt = centroids[i]
pts.append(pt)
cx = pt[0]
cy = pt[1]
x = int(round(cx))
y = int(round(cy))
# draw small square at centroids
result[y-2:y+3,x-2:x+3] = (0,255,0)
print('centroid =',cx,",",cy)
number = len(pts)
for i in range(number-1):
pt1 = pts[i]
x1 = pt1[0]
y1 = pt1[1]
pt2 = pts[i+1]
x2 = pt2[0]
y2 = pt2[1]
dist = math.sqrt( (x2-x1)**2 + (y2-y1)**2 )
print('distance =', dist)
print('')
#save images
cv2.imwrite('red_spots_thresh2.jpg',thresh)
cv2.imwrite('red_spots_morph2.jpg',morph)
cv2.imwrite('red_spots_centroids2.jpg',result)
# show images
cv2.imshow("thresh", thresh)
cv2.imshow("morph", morph)
cv2.imshow("result", result)
cv2.waitKey(0)
cv2.destroyAllWindows()
Threshold image:
Morphology cleaned image:
Result image with colored region labels and centroids:
Centroids and Distances:
centroid = 1006.7307283673711 , 433.70499350726004
centroid = 1036.418693371483 , 750.4024797329519
distance = 318.08595229553544
Upvotes: 1
Reputation: 53079
Here is one way to do your processing in Python/OpenCV using contours.
Input:
import cv2
import numpy as np
import math
# read image
frame = cv2.imread('red_spots.jpg')
# convert to hsv hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
# threshold image
lower_red = np.array([0, 0, 225])
upper_red = np.array([255, 255, 255])
thresh = cv2.inRange(hsv, lower_red, upper_red)
# apply close and open morphology to smooth
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (9,9))
morph = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel)
morph = cv2.morphologyEx(morph, cv2.MORPH_OPEN, kernel)
# draw contours and get centroids
spots = frame.copy()
contours = cv2.findContours(morph, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
contours = contours[0] if len(contours) == 2 else contours[1]
pts = []
count = 0
for c in contours:
cv2.drawContours(spots, [c], -1, (0,255,0), 2)
M = cv2.moments(c)
cx = M["m10"] / M["m00"]
cy = M["m01"] / M["m00"]
pt = (cx,cy)
pts.append(pt)
x = round(cx)
y = round(cy)
# draw small square at centroids
spots[y-2:y+3,x-2:x+3] = (255,0,0)
print('centroid =',cx,",",cy)
count = count + 1
for i in range(count-1):
pt1 = pts[i]
x1 = pt1[0]
y1 = pt1[1]
pt2 = pts[i+1]
x2 = pt2[0]
y2 = pt2[1]
dist = math.sqrt( (x2-x1)**2 + (y2-y1)**2 )
print('distance =', dist)
print('')
#save images
cv2.imwrite('red_spots_thresh.png',thresh)
cv2.imwrite('red_spots_morph.png',morph)
cv2.imwrite('red_spots_centroids.png',spots)
# show images
cv2.imshow("thresh", thresh)
cv2.imshow("morph", morph)
cv2.imshow("spots", spots)
cv2.waitKey(0)
cv2.destroyAllWindows()
Threshold image:
Morphology cleaned image:
Contours and centroids image:
Centroids and Distances:
centroid = 1036.4038142620232 , 750.3941127694858
centroid = 1006.6605586230609 , 433.9662237323787
distance = 317.8227024875417
Upvotes: 0
Reputation: 53079
Distance is the square root of the sum of the squares of the x difference and the y difference. So
import math
dist = math.sqrt( (x1-x2)**2 + (y1-y2)**2 )
for points x1,y1 and x2,y2
Upvotes: 1